Homoclinic structure controls chaotic tunneling

被引:36
作者
Creagh, SC [1 ]
Whelan, ND
机构
[1] Univ Paris 11, Inst Phys Nucl, Div Phys Theor, CNRS,Unite Rech, F-91406 Orsay, France
[2] Univ Paris 06, CNRS, Unite Rech, F-75252 Paris 05, France
[3] CEA, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
关键词
D O I
10.1103/PhysRevLett.82.5237
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tunneling from a chaotic potential well is explained in terms of a set of complex periodic orbits which contain information about the real dynamics inside the well, as well as the complex dynamics under the confining barrier. These orbits are associated with trajectories which are homoclinic to a real trajectory emerging from the optimal tunneling path. The theory is verified by considering a model double-well problem.
引用
收藏
页码:5237 / 5240
页数:4
相关论文
共 23 条
[1]   Semiclassical representation of width-weighted spectra [J].
Beims, MW ;
Kondratovich, V ;
Delos, JB .
PHYSICAL REVIEW LETTERS, 1998, 81 (21) :4537-4540
[2]   SEMICLASSICAL QUANTIZATION OF MULTIDIMENSIONAL SYSTEMS [J].
BOGOMOLNY, EB .
NONLINEARITY, 1992, 5 (04) :805-866
[3]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[4]   QUANTUM TUNNELING AND CHAOTIC DYNAMICS [J].
BOHIGAS, O ;
BOOSE, D ;
DECARVALHO, RE ;
MARVULLE, V .
NUCLEAR PHYSICS A, 1993, 560 (01) :197-210
[5]   DYNAMIC QUASIDEGENERACIES AND SEPARATION OF REGULAR AND IRREGULAR QUANTUM LEVELS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1479-1482
[6]   Complex periodic orbits and tunneling in chaotic potentials [J].
Creagh, SC ;
Whelan, ND .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :4975-4979
[7]   A matrix element for chaotic tunnelling rates and scarring intensities [J].
Creagh, SC ;
Whelan, ND .
ANNALS OF PHYSICS, 1999, 272 (02) :196-242
[8]  
CREAGH SC, IN PRESS
[9]   SEMICLASSICAL DESCRIPTION OF TUNNELING IN MIXED SYSTEMS - CASE OF THE ANNULAR BILLIARD [J].
DORON, E ;
FRISCHAT, SD .
PHYSICAL REVIEW LETTERS, 1995, 75 (20) :3661-3664
[10]   Dynamical tunneling in mixed systems [J].
Frischat, SD ;
Doron, E .
PHYSICAL REVIEW E, 1998, 57 (02) :1421-1443