Almost-complex and almost-product Einstein manifolds from a variational principle

被引:30
作者
Borowiec, A
Ferraris, M
Francaviglia, M
Volovich, I
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 117966, Russia
关键词
D O I
10.1063/1.532899
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the first-order (Palatini) variational principle for a generic nonlinear metric-affine Lagrangian depending on the (symmetrized) Ricci square invariant leads to an almost-product Einstein structure or to an almost-complex anti-Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian metric on a complex manifold satisfies the Kahler condition on the same manifold treated as a real manifold if and only if the metric is the real part of a holomorphic metric. A characterization of anti-Kahler Einstein manifolds and almost-product Einstein manifolds is obtained. Examples of such manifolds are considered. (C) 1999 American Institute of Physics. [S0022-2488(99)03107-2].
引用
收藏
页码:3446 / 3464
页数:19
相关论文
共 60 条
[1]  
[Anonymous], 1983, DIFFERENTIAL GEOMETR
[2]  
[Anonymous], RIV MAT U PARMA
[3]   KALUZA-KLEIN THEORIES AND THE SIGNATURE OF SPACE-TIME [J].
AREFEVA, IY ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1985, 164 (4-6) :287-292
[4]   EXTRA TIME-LIKE DIMENSIONS LEAD TO A VANISHING COSMOLOGICAL CONSTANT [J].
AREFEVA, IY ;
DRAGOVIC, BG ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1986, 177 (3-4) :357-360
[5]   p-brane solutions in diverse dimensions [J].
Arefeva, IY ;
Viswanathan, KS ;
Volovich, IV .
PHYSICAL REVIEW D, 1997, 55 (08) :4748-4755
[6]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[7]  
Blazic N, 1998, J MATH PHYS, V39, P6118, DOI 10.1063/1.532617
[8]  
BLAZIC N, 1996, DIFFERENTIAL GEOMETR, P249
[9]   Universality of the Einstein equations for Ricci squared Lagrangians [J].
Borowiec, A ;
Ferraris, M ;
Francaviglia, M ;
Volovich, I .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (01) :43-55
[10]  
BOROWIEC A, UNPUB PARAKAHLER MAN