Lineage specific recombination rates and microevolution in Listeria monocytogenes

被引:85
作者
den Bakker, Henk C. [1 ]
Didelot, Xavier [2 ]
Fortes, Esther D. [1 ]
Nightingale, Kendra K. [3 ]
Wiedmann, Martin [1 ]
机构
[1] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[3] Colorado State Univ, Dept Anim Sci, Ft Collins, CO 80523 USA
关键词
D O I
10.1186/1471-2148-8-277
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates. Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease.
引用
收藏
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 1999, GENECONV: A computer package for the statistical detection of gene conversion
[2]   Species status of Neisseria gonorrhoeae:: evolutionary and epidemiological inferences from multilocus sequence typing [J].
Bennett, Julia S. ;
Jolley, Keith A. ;
Sparling, P. Frederick ;
Saunders, Nigel J. ;
Hart, C. Anthony ;
Feavers, Ian M. ;
Maiden, Martin C. J. .
BMC BIOLOGY, 2007, 5 (1)
[3]   Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein [J].
Borezee, E ;
Msadek, T ;
Durant, L ;
Berche, P .
JOURNAL OF BACTERIOLOGY, 2000, 182 (20) :5931-5934
[4]   Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing [J].
Borucki, MK ;
Kim, SH ;
Call, DR ;
Smole, SC ;
Pagotto, F .
JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (11) :5270-5276
[5]   Attributing risk to Listeria monocytogenes subgroups:: Dose response in relation to genetic lineages [J].
Chen, YH ;
Ross, WH ;
Gray, MJ ;
Wiedmann, M ;
Whiting, RC ;
Scott, VN .
JOURNAL OF FOOD PROTECTION, 2006, 69 (02) :335-344
[6]   Inference of bacterial microevolution using multilocus sequence data [J].
Didelot, Xavier ;
Falush, Daniel .
GENETICS, 2007, 175 (03) :1251-1266
[7]  
Falush D, 2003, GENETICS, V164, P1567
[8]   Traces of human migrations in Helicobacter pylori populations [J].
Falush, D ;
Wirth, T ;
Linz, B ;
Pritchard, JK ;
Stephens, M ;
Kidd, M ;
Blaser, MJ ;
Graham, DY ;
Vacher, S ;
Perez-Perez, GI ;
Yamaoka, Y ;
Mégraud, F ;
Otto, K ;
Reichard, U ;
Katzowitsch, E ;
Wang, XY ;
Achtman, M ;
Suerbaum, S .
SCIENCE, 2003, 299 (5612) :1582-1585
[9]   Recombination and mutation during long-term gastric colonization by Helicobacter pylori:: Estimates of clock rates, recombination size, and minimal age [J].
Falush, D ;
Kraft, C ;
Taylor, NS ;
Correa, P ;
Fox, JG ;
Achtman, M ;
Suerbaum, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15056-15061
[10]   FACTORS DETERMINING THE ACCURACY OF CLADOGRAM ESTIMATION - EVALUATION USING COMPUTER-SIMULATION [J].
FIALA, KI ;
SOKAL, RR .
EVOLUTION, 1985, 39 (03) :609-622