17-β-Estradiol Inhibits Transforming Growth Factor-β Signaling and Function in Breast Cancer Cells via Activation of Extracellular Signal-Regulated Kinase through the G Protein-Coupled Receptor 30

被引:75
作者
Kleuser, Burkhard [1 ]
Malek, Daniela [3 ]
Gust, Ronald [3 ]
Pertz, Heinz H. [2 ]
Potteck, Henrik [1 ]
机构
[1] Free Univ Berlin, Inst Pharm Pharmacol & Toxicol, D-14195 Berlin, Germany
[2] Free Univ Berlin, Inst Pharm Pharmaceut Biol, D-14195 Berlin, Germany
[3] Free Univ Berlin, Inst Pharm Pharmaceut Chem, D-14195 Berlin, Germany
关键词
D O I
10.1124/mol.108.046854
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.
引用
收藏
页码:1533 / 1543
页数:11
相关论文
共 42 条
[1]   Role of transforming growth factor β in breast carcinogenesis [J].
Benson, JR .
LANCET ONCOLOGY, 2004, 5 (04) :229-239
[2]   Prognostic significance of transforming growth factor β receptor II in estrogen receptor-negative breast cancer patients [J].
Buck, MB ;
Fritz, P ;
Dippon, J ;
Zugmaier, G ;
Knabbe, C .
CLINICAL CANCER RESEARCH, 2004, 10 (02) :491-498
[3]   Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer [J].
Carmeci, C ;
Thompson, DA ;
Ring, HJZ ;
Francke, U ;
Weigel, RJ .
GENOMICS, 1997, 45 (03) :607-617
[4]  
Chen HM, 1996, J CELL BIOCHEM, V61, P9, DOI 10.1002/(SICI)1097-4644(19960401)61:1<9::AID-JCB2>3.3.CO
[5]  
2-2
[6]   Estrogen receptors inhibit Smad3 transcriptional activity through Ap-1 transcription factors [J].
Cherlet, Tracy ;
Murphy, Leigh C. .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2007, 306 (1-2) :33-42
[7]  
Clarke R, 2001, PHARMACOL REV, V53, P25
[8]   Estrogen receptors and human disease [J].
Deroo, BJ ;
Korach, KS .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (03) :561-570
[9]   Requirements for estrogen receptor at membrane localization and function [J].
Evinger, AJ ;
Levin, ER .
STEROIDS, 2005, 70 (5-7) :361-363
[10]   Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane [J].
Filardo, E. ;
Quinn, J. ;
Pang, Y. ;
Graeber, C. ;
Shaw, S. ;
Dong, J. ;
Thomas, P. .
ENDOCRINOLOGY, 2007, 148 (07) :3236-3245