The unitary interactor matrix and its estimation using closed-loop data

被引:46
作者
Huang, B
Shah, SL
Fujii, H
机构
[1] UNIV ALBERTA, DEPT CHEM ENGN, EDMONTON, AB T6G 2G6, CANADA
[2] MITSUBISHI CHEM CORP, KITAKYUSHU, FUKUOKA, JAPAN
关键词
interactor matrices; minimum variances control; closed-loop identification; singular value decomposition;
D O I
10.1016/S0959-1524(96)00028-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the factorization and estimation of the unitary interactor matrix or the time-delay matrix of multivariable systems. The important properties of the unitary interactor matrix for minimum variance control are discussed. An algorithm for factorization of the unitary interactor matrix from the Markov parameters is introduced. A method for direct estimation of the interactor matrix from closed-loop data is proposed. The proposed algorithm is evaluated by application to a simulated example, pilot-scale experiment and actual industrial data. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 25 条
[1]  
Aoki M., 1987, State Space Modeling of Time Series
[2]  
BITTANTI S, 1994, IEEE DECIS CONTR P, P2165, DOI 10.1109/CDC.1994.411409
[3]  
Box GEP, 1976, Time series analysis: Forecasting and control
[4]  
CHU C, 1985, THESIS U MINNESOTA M
[5]   THE ROLE OF THE INTERACTOR MATRIX IN MULTIVARIABLE STOCHASTIC ADAPTIVE-CONTROL [J].
DUGARD, L ;
GOODWIN, GC ;
XIE, XY .
AUTOMATICA, 1984, 20 (05) :701-709
[6]  
Golub G, 2013, Matrix Computations, V4th
[7]  
Goodwin G C., 1984, ADAPTIVE FILTERING P
[8]  
HARRIS T, 1995, 1995 AICHE ANN M MIA
[9]   DESIGN OF MULTIVARIABLE LINEAR-QUADRATIC CONTROLLERS USING TRANSFER-FUNCTIONS [J].
HARRIS, TJ ;
MACGREGOR, JF .
AICHE JOURNAL, 1987, 33 (09) :1481-1495
[10]  
HUANG B, 1997, THESIS U ALBERTA EDM