Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

被引:249
作者
Fischer, E. V. [1 ]
Jacob, D. J. [2 ]
Yantosca, R. M. [2 ]
Sulprizio, M. P. [2 ]
Millet, D. B. [3 ]
Mao, J. [4 ]
Paulot, F. [1 ]
Singh, H. B. [5 ]
Roiger, A. [6 ]
Ries, L. [7 ]
Talbot, R. W. [8 ]
Dzepina, K. [9 ]
Deolal, S. Pandey [10 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA
[4] Princeton Univ, GFDL, Princeton, NJ 08544 USA
[5] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[6] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[7] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA
[8] GAW Global Stn Zugspitze Hohenpeissenberg, Fed Environm Agcy, Zugspitze, Germany
[9] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA
[10] Bluesign Technol AG, St Gallen, Switzerland
基金
美国国家科学基金会;
关键词
VOLATILE ORGANIC-COMPOUNDS; LONG-RANGE TRANSPORT; OZONE PRODUCTION EFFICIENCIES; BIOMASS BURNING EMISSIONS; DIFFERENT SOURCE REGIONS; NITRIC ANHYDRIDES PANS; LOWER FREE TROPOSPHERE; TROPICAL RAIN-FOREST; METHYL VINYL KETONE; PEARL RIVER DELTA;
D O I
10.5194/acp-14-2679-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO+ NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.
引用
收藏
页码:2679 / 2698
页数:20
相关论文
共 167 条
[1]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[2]   Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations [J].
Alvarado, M. J. ;
Logan, J. A. ;
Mao, J. ;
Apel, E. ;
Riemer, D. ;
Blake, D. ;
Cohen, R. C. ;
Min, K-E ;
Perring, A. E. ;
Browne, E. C. ;
Wooldridge, P. J. ;
Diskin, G. S. ;
Sachse, G. W. ;
Fuelberg, H. ;
Sessions, W. R. ;
Harrigan, D. L. ;
Huey, G. ;
Liao, J. ;
Case-Hanks, A. ;
Jimenez, J. L. ;
Cubison, M. J. ;
Vay, S. A. ;
Weinheimer, A. J. ;
Knapp, D. J. ;
Montzka, D. D. ;
Flocke, F. M. ;
Pollack, I. B. ;
Wennberg, P. O. ;
Kurten, A. ;
Crounse, J. ;
St Clair, J. M. ;
Wisthaler, A. ;
Mikoviny, T. ;
Yantosca, R. M. ;
Carouge, C. C. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (20) :9739-9760
[3]  
Angelo C, 2012, NATURE NEWS, DOI [10.1038/nature.2012.11467, DOI 10.1038/NATURE.2012.11467]
[4]  
[Anonymous], 2011, JPL PUBLICATION
[5]   Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J].
Atkinson, R ;
Arey, J .
ATMOSPHERIC ENVIRONMENT, 2003, 37 :S197-S219
[6]   The Tropospheric Ozone Production about the Spring Equinox (TOPSE) Experiment: Introduction [J].
Atlas, EL ;
Ridley, BA ;
Cantrell, CA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D4)
[7]   Ambient halocarbon mixing ratios in 45 Chinese cities [J].
Barletta, Barbara ;
Meinardi, Simone ;
Simpson, Isobel J. ;
Rowland, F. Sherwood ;
Chan, Chuen-Yu ;
Wang, Xinming ;
Zou, Shichun ;
Chan, Lo Yin ;
Blake, Donald R. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (40) :7706-7719
[8]   Evidence of the impact of deep convection on reactive Volatile Organic Compounds in the upper tropical troposphere during the AMMA experiment in West Africa [J].
Bechara, J. ;
Borbon, A. ;
Jambert, C. ;
Colomb, A. ;
Perros, P. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (21) :10321-10334
[9]   Measurements of PAN, alkyl nitrates, ozone, and hydrocarbons during spring in interior Alaska [J].
Beine, HJ ;
Jaffe, DA ;
Blake, DR ;
Atlas, E ;
Harris, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D7) :12613-12619
[10]   High-latitude springtime photochemistry .1. NOx, PAN and ozone relationships [J].
Beine, HJ ;
Jaffe, DA ;
Herring, JA ;
Kelley, JA ;
Krognes, T ;
Stordal, F .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 27 (02) :127-153