Quantum chaos of a kicked particle in an infinite potential well

被引:78
作者
Hu, BB [1 ]
Li, BW
Liu, J
Gu, Y
机构
[1] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Peoples R China
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[5] Univ Sci & Technol China, Ctr Fundamental Phys, Hefei 230026, Peoples R China
关键词
D O I
10.1103/PhysRevLett.82.4224
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study quantum chaos in a non-KAM system exemplified by a particle in an infinite potential well subject to a periodic kicking force. For a small perturbution K, the classical phase space displays a stochastic web structure, and the diffusion coefficient scales as D proportional to K-2.5. However, in the large K regime, D proportional to K-2. Quantum mechanically, we observe that the level spacing statistics of the quasieigenenergies changes from Poisson to Wigner distribution as K increases. The quasieigenstates are power-law localized for small K and extended for large K. Possible experimental realization of this model is also discussed. [S0031-9007(99)08900-0].
引用
收藏
页码:4224 / 4227
页数:4
相关论文
共 23 条
[1]   LOCALIZATION OF CLASSICALLY CHAOTIC DIFFUSION FOR HYDROGEN-ATOMS IN MICROWAVE FIELDS [J].
BAYFIELD, JE ;
CASATI, G ;
GUARNERI, I ;
SOKOL, DW .
PHYSICAL REVIEW LETTERS, 1989, 63 (04) :364-367
[2]   THE PROBLEM OF QUANTUM CHAOS IN A KICKED HARMONIC-OSCILLATOR [J].
BERMAN, GP ;
RUBAEV, VY ;
ZASLAVSKY, GM .
NONLINEARITY, 1991, 4 (02) :543-566
[3]   Diffusion and localization in chaotic billiards [J].
Borgonovi, F ;
Casati, G ;
Li, BW .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4744-4747
[4]   Localization in discontinuous quantum systems [J].
Borgonovi, F .
PHYSICAL REVIEW LETTERS, 1998, 80 (21) :4653-4656
[5]   TRANSLATIONAL INVARIANCE IN THE KICKED HARMONIC-OSCILLATOR [J].
BORGONOVI, F ;
REBUZZINI, L .
PHYSICAL REVIEW E, 1995, 52 (03) :2302-2309
[6]  
BORGONOVI F, IN PRESS PHYSICA D
[7]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[8]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616
[9]   Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model [J].
Casati, G ;
Chirikov, BV ;
Guarneri, I ;
Izrailev, FM .
PHYSICS LETTERS A, 1996, 223 (06) :430-435
[10]  
Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757