Statistical mechanics of braided Markov chains .1. Analytic methods and numerical simulations

被引:9
作者
Desbois, J [1 ]
Nechaev, S
机构
[1] UNIV PARIS 06,INST PHYS NUCL,DIV PHYS THEOR,CNRS,UNITE RECH,F-91406 ORSAY,FRANCE
[2] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
关键词
random walk; braid group; graph of the group; primitive word; symbolic dynamics;
D O I
10.1007/BF02508470
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate numerically and analytically the statistics of Markov chains on so-called braid (B-n) and locally free (LFn) groups. Namely, we compute the mean length [mu] and the variance [mu(2)]-[mu](2) of the shortest word which remains after applying of all group relations to the randomly generated N-letter word (Markov chain). We express the conjecture (numerically justified) that the mean value [mu] for the random walk on the group B-n (n much greater than 1) coincides with high accuracy with the same value for the random walk on the ''locally free group with errors'' if the number of errors is of order of 20%.
引用
收藏
页码:201 / 229
页数:29
相关论文
共 24 条
  • [1] BIRMAN J, 1976, KNOTS LINKS MAPPING, V82
  • [2] QUANTUM MAPS FROM TRANSFER OPERATORS
    BOGOMOLNY, EB
    CARIOLI, M
    [J]. PHYSICA D, 1993, 67 (1-3): : 88 - 112
  • [3] CHASSAING P, 1983, LECT NOT MATH, V1064
  • [4] COMET A, UNPUB
  • [5] DESBOIS J, UNPUB
  • [6] Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [DOI 10.2307/1993589, 10.1090/s0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1]
  • [7] GROSBERG AY, 1994, STAT PHYSICS MACROMO
  • [8] GUTZWILLER M, 1909, CHAOS CLASSICAL QUAN
  • [9] KAUFFMAN LH, 1994, KNOTS PHYSICS
  • [10] Kesten H., 1959, Trans. Amer. Math. Soc., V92, P336, DOI [DOI 10.2307/1993160, DOI 10.1090/S0002-9947-1959-0109367-6, 10.1090/S0002-9947-1959-0109367-6]