Plasticity of marrow-derrived stem cells

被引:155
作者
Krause, DS [1 ]
机构
[1] Yale Univ, Sch Med, Dept Lab Med, New Haven, CT 06520 USA
关键词
review; hematopoiesis; transdifferentiation; development; bone marrow; liver;
D O I
10.1038/sj.gt.3301760
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many exciting discoveries reported over the past 3 years have caused us to expand the paradigm for understanding somatic stem cell plasticity. Within adult organs, there are not only specific stem cells that are capable of producing functional cells of one organ system, but also cells with the flexibility to differentiate into multiple other cell types. In the bone marrow, for example, in addition to hematopoietic stem cells and supportive stromal cells, there are cells with the potential to differentiate into mature cells of the heart, liver, kidney, lungs, GI tract, skin, bone, muscle, cartilage, fat, endothelium and brain. A subpopulation of cells in the brain can differentiate into all of the major cell types in the brain and also into hematopoietic and skeletal muscle cells. In this brief overview, several of these recent findings are summarized.
引用
收藏
页码:754 / 758
页数:5
相关论文
共 37 条
[1]   Cell differentiation - Hepatocytes from nonhepatic adult stem cells [J].
Alison, MR ;
Poulsom, R ;
Jeffery, R ;
Dhillon, AP ;
Quaglia, A ;
Jacob, J ;
Novelli, M ;
Prentice, G ;
Williamson, J ;
Wright, NA .
NATURE, 2000, 406 (6793) :257-257
[2]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[3]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[4]   Cloned transgenic calves produced from nonquiescent fetal fibroblasts [J].
Cibelli, JB ;
Stice, SL ;
Golueke, PJ ;
Kane, JJ ;
Jerry, J ;
Blackwell, C ;
de Leon, FAP ;
Robl, JM .
SCIENCE, 1998, 280 (5367) :1256-1258
[5]   Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice [J].
Eglitis, MA ;
Mezey, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4080-4085
[6]   Muscle regeneration by bone marrow derived myogenic progenitors [J].
Ferrari, G ;
Cusella-De Angelis, G ;
Coletta, M ;
Paolucci, E ;
Stornaiuolo, A ;
Cossu, G ;
Mavilio, F .
SCIENCE, 1998, 279 (5356) :1528-1530
[7]   FUNCTIONAL-HETEROGENEITY IS ASSOCIATED WITH THE CELL-CYCLE STATUS OF MURINE HEMATOPOIETIC STEM-CELLS [J].
FLEMING, WH ;
ALPERN, EJ ;
UCHIDA, N ;
IKUTA, K ;
SPANGRUDE, GJ ;
WEISSMAN, IL .
JOURNAL OF CELL BIOLOGY, 1993, 122 (04) :897-902
[8]   DEVELOPMENT OF FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA-PIG BONE MARROW AND SPLEEN CELLS [J].
FRIEDENSTEIN, AJ ;
CHAILAKHJAN, RK ;
LALYKINA, KS .
CELL AND TISSUE KINETICS, 1970, 3 (04) :393-+
[9]   Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo [J].
Goodell, MA ;
Brose, K ;
Paradis, G ;
Conner, AS ;
Mulligan, RC .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (04) :1797-1806
[10]   Dystrophin expression in the mdx mouse restored by stem cell transplantation [J].
Gussoni, E ;
Soneoka, Y ;
Strickland, CD ;
Buzney, EA ;
Khan, MK ;
Flint, AF ;
Kunkel, LM ;
Mulligan, RC .
NATURE, 1999, 401 (6751) :390-394