Svetitsky-Yaffe conjecture for the plaquette operator

被引:26
作者
Gliozzi, F
Provero, P
机构
[1] Dipartimento di Fisica Teorica dell’Università di Torino, Istituto Nazionale di Fisica Nucleare, Sezione di Torino
来源
PHYSICAL REVIEW D | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevD.56.1131
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
According to the Svetitsky-Yaffe conjecture, a (d+1)-dimensional pure gauge theory undergoing a continuous deconfinement transition is in the same universality class as a d-dimensional statistical model with the order parameter taking values in the center of the gauge group. We show that the plaquette operator of the gauge theory is mapped into the energy operator of the statistical model. For d = 2, this identification allows us to use conformal field theory techniques to evaluate exactly the correlation functions of the plaquette operator at the critical point. In particular, we can evaluate exactly the plaquette expectation value in the presence of static sources, which gives some new insight into the structure of the color Aux tube in mesons and baryons.
引用
收藏
页码:1131 / 1134
页数:4
相关论文
共 9 条
[1]   Deconfinement transition and dimensional cross-over in the 3D gauge Ising model [J].
Caselle, M ;
Hasenbusch, M .
NUCLEAR PHYSICS B, 1996, 470 (03) :435-453
[2]   Baryon Wilson loop area law in QCD [J].
Cornwall, JM .
PHYSICAL REVIEW D, 1996, 54 (10) :6527-6536
[3]   CRITICAL ISING CORRELATION-FUNCTIONS IN THE PLANE AND ON THE TORUS [J].
DIFRANCESCO, P ;
SALEUR, H ;
ZUBER, JB .
NUCLEAR PHYSICS B, 1987, 290 (04) :527-581
[4]   CRITICAL-BEHAVIOR AND ASSOCIATED CONFORMAL ALGEBRA OF THE Z3 POTTS-MODEL [J].
DOTSENKO, VS .
NUCLEAR PHYSICS B, 1984, 235 (01) :54-74
[5]   BOUNDED AND INHOMOGENEOUS ISING MODELS .I. SPECIFIC-HEAT ANOMALY OF A FINITE LATTICE [J].
FERDINAN.AE ;
FISHER, ME .
PHYSICAL REVIEW, 1969, 185 (02) :832-&
[6]  
GLIOZZI F, 1997, NUCL PHYS B S, V53
[7]  
ITZYKSON C, 1989, STAT FIELD THEORY, pCH9
[8]  
KALASHNIKOVA YS, HEPPH9604411
[9]  
SVETITSKY B, 1982, NUCL PHYS B, V210, P423, DOI 10.1016/0550-3213(82)90172-9