Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function

被引:209
作者
Hartwig, A [1 ]
机构
[1] Univ Karlsruhe, Inst Food Chem & Toxicol, D-76128 Karlsruhe, Germany
关键词
D O I
10.1089/15230860152542970
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zinc finger structures are frequently found in transcription factors and DNA repair proteins, mediating DNA-protein and protein-protein binding. As low concentrations of transition metal compounds, including those of cadmium, nickel, and cobalt, have been shown to interfere with DNA transcription and repair, several studies have been conducted to elucidate potential interactions of toxic metal ions with zinc-binding protein domains. Various effects have been identified, including the displacement of zinc, e.g., by cadmium or cobalt, the formation of mixed complexes, incomplete coordination of toxic metal ions, as well as the oxidation of cysteine residues within the metal-binding domain. Besides the number of cysteine and/or histidine ligands, unique structural features of the respective protein under investigation determine whether or not zinc finger structures are disrupted by one or more transition metals. As improper folding of zinc finger domains is mostly associated with the loss of correct protein function, disruption of zinc finger structures may result in interference with manifold cellular processes involved in gene expression, growth regulation, and maintenance of the genomic integrity.
引用
收藏
页码:625 / 634
页数:10
相关论文
共 57 条
[1]   THE XPA PROTEIN IS A ZINC METALLOPROTEIN WITH AN ABILITY TO RECOGNIZE VARIOUS KINDS OF DNA-DAMAGE [J].
ASAHINA, H ;
KURAOKA, I ;
SHIRAKAWA, M ;
MORITA, EH ;
MIURA, N ;
MIYAMOTO, I ;
OHTSUKA, E ;
OKADA, Y ;
TANAKA, K .
MUTATION RESEARCH-DNA REPAIR, 1994, 315 (03) :229-237
[2]   Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair [J].
Asmuss, M ;
Mullenders, LHF ;
Eker, A ;
Hartwig, A .
CARCINOGENESIS, 2000, 21 (11) :2097-2104
[3]   Interference by toxic metal compounds with isolated zinc finger DNA repair proteins [J].
Asmuss, M ;
Mullenders, LHF ;
Hartwig, A .
TOXICOLOGY LETTERS, 2000, 112 :227-231
[4]  
BERG JM, 1990, J BIOL CHEM, V265, P6513
[5]   Lessons from zinc-binding peptides [J].
Berg, JM ;
Godwin, HA .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1997, 26 :357-371
[6]   Cadmium, gene regulation, and cellular signalling in mammalian cells [J].
Beyersmann, D ;
Hechtenberg, S .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1997, 144 (02) :247-261
[7]   The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals [J].
Bittel, D ;
Dalton, T ;
Samson, SLA ;
Gedamu, L ;
Andrews, GK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (12) :7127-7133
[8]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI FPG PROTEIN (FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE) - EXCISION OF PURINE LESIONS IN DNA PRODUCED BY IONIZING-RADIATION OR PHOTOSENSITIZATION [J].
BOITEUX, S ;
GAJEWSKI, E ;
LAVAL, J ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (01) :106-110
[9]   Extended X-ray absorption fine structure evidence for a single metal binding domain in Xenopus laevis nucleotide excision repair protein XPA [J].
Buchko, GW ;
Iakoucheva, LM ;
Kennedy, MA ;
Ackerman, EJ ;
Hess, NJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 254 (01) :109-113
[10]  
Buchko GW, 2000, PROTEIN PEPTIDE LETT, V7, P49