Vascular endothelial growth factor and diabetes - The agonist versus antagonist paradox

被引:256
作者
Duh, E
Aiello, LP
机构
[1] Beetham Eye Inst, Joslin Diabet Ctr, Boston, MA 02215 USA
[2] Johns Hopkins Univ Hosp, Wilmer Ophthalmol Inst, Baltimore, MD 21287 USA
[3] Harvard Univ, Sch Med, Dept Ophthalmol, Boston, MA USA
关键词
D O I
10.2337/diabetes.48.10.1899
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Much of the morbidity and mortality associated with diabetes is primarily attributable to sequelae of microvascular and macrovascular disease. Over the past decade, dramatic progress has been achieved in elucidating the fundamental processes underlying the pathogenesis of these complications. Angiogenic factors in particular now appear to play a pivotal role in the development of microvascular complications as well as the response to macrovascular disease. Hyperglycemia, other growth factors, advanced glycation end products, oxidative stress, and ischemia can increase growth factor expression. In some microvascular tissues, the result is pathologic neovascularization and increased vascular permeability. These responses account for much of the visual loss associated with diabetic retinopathy and may, in addition, serve a significant role in nephropathy and neuropathy. In contrast, recent data suggest that vascular collateralization resulting from ischemia-induced growth factor release in tissues compromised by macrovascular disease may be important in reducing clinical symptoms and tissue damage. This angiogenic response, which may be beneficial in coronary artery and peripheral limb disease, appears to be reduced in patients with diabetes. Thus, two apparently diametrically opposed therapeutic paradigms are arising for the treatment of vascular complications in diabetes. Indeed, growth factor antagonists have been used successfully in diabetes-related animal models to block angiogenic and permeability complications in the retina and kidney. Conversely, growth factor agonists have been successfully used to stimulate collateral vessel formation and reduce ischemic symptoms from macrovascular disease in the coronary arteries and peripheral limbs. Both of these approaches are currently being evaluated in clinical trials for their respective indications. Thus, as these divergent therapeutic modalities begin to enter the clinical arena, this apparent paradox necessitates careful consideration of the potential risks, benefits, and interactions of the opposing regimens. Using vascular endothelial growth factor as a classic example of growth factor involvement, we discuss the current preclinical and clinical data supporting these approaches and the implications arising from the probable coexistence of these two therapeutic modalities.
引用
收藏
页码:1899 / 1906
页数:8
相关论文
共 102 条
[1]   INCREASED VASCULAR ENDOTHELIAL GROWTH-FACTOR LEVELS IN THE VITREOUS OF EYES WITH PROLIFERATIVE DIABETIC-RETINOPATHY [J].
ADAMIS, AP ;
MILLER, JW ;
BERNAL, MT ;
DAMICO, DJ ;
FOLKMAN, J ;
YEO, TK ;
YEO, KT .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 1994, 118 (04) :445-450
[2]   Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate [J].
Adamis, AP ;
Shima, DT ;
Tolentino, MJ ;
Gragoudas, ES ;
Ferrara, N ;
Folkman, J ;
DAmore, PA ;
Miller, JW .
ARCHIVES OF OPHTHALMOLOGY, 1996, 114 (01) :66-71
[3]   SYNTHESIS AND SECRETION OF VASCULAR-PERMEABILITY FACTOR VASCULAR ENDOTHELIAL GROWTH-FACTOR BY HUMAN RETINAL-PIGMENT EPITHELIAL-CELLS [J].
ADAMIS, AP ;
SHIMA, DT ;
YEO, KT ;
YEO, TK ;
BROWN, LF ;
BERSE, B ;
DAMORE, PA ;
FOLKMAN, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 193 (02) :631-638
[4]   Diabetic retinopathy [J].
Aiello, LP ;
Gardner, TW ;
King, GL ;
Blankenship, G ;
Cavallerano, JD ;
Ferris, FL ;
Klein, R .
DIABETES CARE, 1998, 21 (01) :143-156
[5]   Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor [J].
Aiello, LP ;
Bursell, SE ;
Clermont, A ;
Duh, E ;
Ishii, H ;
Takagi, C ;
Mori, F ;
Ciulla, TA ;
Ways, K ;
Jirousek, M ;
Smith, LEH ;
King, GL .
DIABETES, 1997, 46 (09) :1473-1480
[6]   HYPOXIC REGULATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR IN RETINAL CELLS [J].
AIELLO, LP ;
NORTHRUP, JM ;
KEYT, BA ;
TAKAGI, H ;
IWAMOTO, MA .
ARCHIVES OF OPHTHALMOLOGY, 1995, 113 (12) :1538-1544
[7]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[8]   VASCULAR ENDOTHELIAL GROWTH-FACTOR IN OCULAR FLUID OF PATIENTS WITH DIABETIC-RETINOPATHY AND OTHER RETINAL DISORDERS [J].
AIELLO, LP ;
AVERY, RL ;
ARRIGG, PG ;
KEYT, BA ;
JAMPEL, HD ;
SHAH, ST ;
PASQUALE, LR ;
THIEME, H ;
IWAMOTO, MA ;
PARK, JE ;
NGUYEN, HV ;
AIELLO, LM ;
FERRARA, N ;
KING, GL .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1480-1487
[9]  
Alderman EL, 1996, NEW ENGL J MED, V335, P217
[10]  
Amin RH, 1997, INVEST OPHTH VIS SCI, V38, P36