QuickVina: Accelerating AutoDock Vina Using Gradient-Based Heuristics for Global Optimization

被引:47
作者
Handoko, Stephanus Daniel [1 ]
Ouyang, Xuchang [2 ]
Chinh Tran To Su [2 ]
Kwoh, Chee Keong
Ong, Yew Soon
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Ctr Computat Intelligence, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Comp Engn, BioInformat Res Ctr, Singapore 639798, Singapore
关键词
Artificial intelligence; bioinformatics; global optimization; gradient methods; MEMETIC ALGORITHMS; GENETIC ALGORITHM; FLEXIBLE DOCKING;
D O I
10.1109/TCBB.2012.82
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.
引用
收藏
页码:1266 / 1272
页数:7
相关论文
共 14 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]   Principles of docking: An overview of search algorithms and a guide to scoring functions [J].
Halperin, I ;
Ma, BY ;
Wolfson, H ;
Nussinov, R .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (04) :409-443
[3]  
Handoko S. D., 2011, P IEEE C EV COMP JUN
[4]   Feasibility Structure Modeling: An Effective Chaperone for Constrained Memetic Algorithms [J].
Handoko, Stephanus Daniel ;
Kwoh, Chee Keong ;
Ong, Yew-Soon .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) :740-758
[5]  
Handoko SD, 2009, LECT NOTES ARTIF INT, V5866, P391, DOI 10.1007/978-3-642-10439-8_40
[6]   Development and validation of a genetic algorithm for flexible docking [J].
Jones, G ;
Willett, P ;
Glen, RC ;
Leach, AR ;
Taylor, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (03) :727-748
[7]  
Morris GM, 1998, J COMPUT CHEM, V19, P1639, DOI 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO
[8]  
2-B
[9]   Meta-Lamarckian learning in memetic algorithms [J].
Ong, YS ;
Keane, AJ .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) :99-110
[10]   A fast flexible docking method using an incremental construction algorithm [J].
Rarey, M ;
Kramer, B ;
Lengauer, T ;
Klebe, G .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 261 (03) :470-489