Investigation of a peptide responsible for amyloid fibril formation of β2-microglobulin by Achromobacter protease I

被引:109
作者
Kozhukh, GV
Hagihara, Y
Kawakami, T
Hasegawa, K
Naiki, H
Goto, Y
机构
[1] Osaka Univ, Inst Prot Res, Suita, Osaka 5650871, Japan
[2] Natl Inst Adv Ind Sci & Technol, Special Div Human Life Technol, Ikeda, Osaka 5638577, Japan
[3] Fukui Med Univ, Dept Pathol, Matsuoka, Fukui 9101193, Japan
关键词
D O I
10.1074/jbc.M108753200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact 132-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.
引用
收藏
页码:1310 / 1315
页数:6
相关论文
共 34 条
[1]   CALCIUM TARTRATE GEL [J].
AKHREM, AA ;
DROZHDENYUK, AP .
ANALYTICAL BIOCHEMISTRY, 1989, 179 (01) :86-89
[2]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[3]   STRUCTURE OF THE HUMAN CLASS-I HISTOCOMPATIBILITY ANTIGEN, HLA-A2 [J].
BJORKMAN, PJ ;
SAPER, MA ;
SAMRAOUI, B ;
BENNETT, WS ;
STROMINGER, JL ;
WILEY, DC .
NATURE, 1987, 329 (6139) :506-512
[4]   Toward understanding insulin fibrillation [J].
Brange, J ;
Andersen, L ;
Laursen, ED ;
Meyn, G ;
Rasmussen, E .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1997, 86 (05) :517-525
[5]   TUMORAL AMYLOIDOSIS OF BONE OF BETA-2-MICROGLOBULIN ORIGIN IN ASSOCIATION WITH LONG-TERM HEMODIALYSIS - A NEW TYPE OF AMYLOID DISEASE [J].
CASEY, TT ;
STONE, WJ ;
DIRAIMONDO, CR ;
BRANTLEY, BD ;
DIRAIMONDO, CV ;
GOREVIC, PD ;
PAGE, DL .
HUMAN PATHOLOGY, 1986, 17 (07) :731-738
[6]   Conformational diversity in a yeast prion dictates its seeding specificity [J].
Chien, P ;
Weissman, JS .
NATURE, 2001, 410 (6825) :223-227
[7]   Detection of two partially structured species in the folding process of the amyloidogenic protein β2-microglobulin [J].
Chiti, F ;
Mangione, P ;
Andreola, A ;
Giorgetti, S ;
Stefani, M ;
Dobson, CM ;
Bellottl, V ;
Taddei, N .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :379-391
[8]   Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation [J].
Esposito, G ;
Michelutti, R ;
Verdone, G ;
Viglino, P ;
Hernández, H ;
Robinson, CV ;
Amoresano, A ;
Dal Piaz, F ;
Monti, M ;
Pucci, P ;
Mangione, P ;
Stoppini, M ;
Merlini, G ;
Ferri, G ;
Bellotti, V .
PROTEIN SCIENCE, 2000, 9 (05) :831-845
[9]  
Gejyo F, 1990, Contrib Nephrol, V78, P47
[10]   A NEW FORM OF AMYLOID PROTEIN ASSOCIATED WITH CHRONIC-HEMODIALYSIS WAS IDENTIFIED AS BETA-2-MICROGLOBULIN [J].
GEJYO, F ;
YAMADA, T ;
ODANI, S ;
NAKAGAWA, Y ;
ARAKAWA, M ;
KUNITOMO, T ;
KATAOKA, H ;
SUZUKI, M ;
HIRASAWA, Y ;
SHIRAHAMA, T ;
COHEN, AS ;
SCHMID, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1985, 129 (03) :701-706