Solution of a new class of nonlinear kinetic models of population dynamics

被引:33
作者
Arlotti, L [1 ]
Bellomo, N [1 ]
机构
[1] POLITECN TORINO, DEPT MATH, I-10129 TURIN, ITALY
关键词
population dynamics; kinetic models; Cauchy problem; equilibrium solutions;
D O I
10.1016/0893-9659(96)00014-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper refers to the mathematical analysis of a new class of kinetic type models applicable to population dynamics. Modelling of the evolution equations with multiple interactions and qualitative analysis of the solutions to the Cauchy problem are dealt with.
引用
收藏
页码:65 / 70
页数:6
相关论文
共 7 条
[1]  
Arlotti L., 1995, Transport Theory and Statistical Physics, V24, P431, DOI 10.1080/00411459508205138
[2]   DYNAMICS OF TUMOR INTERACTION WITH THE HOST IMMUNE-SYSTEM [J].
BELLOMO, N ;
FORNI, G .
MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (01) :107-122
[3]  
BELLOMO N, IN PRESS J BIOL SYST
[4]   THE ONTOGENY OF THE INTERACTION STRUCTURE IN BUMBLE BEE COLONIES - A MIRROR MODEL [J].
HOGEWEG, P ;
HESPER, B .
BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 1983, 12 (04) :271-283
[5]  
JAGER E, 1992, SIAM J APPL MATH, V52, P1442
[6]  
Martin R. H., 1976, NONLINEAR OPERATORS
[7]  
PREZIOSI L, IN PRESS COMP MATH M