Runge-Kutta methods for orthogonal and isospectral flows

被引:22
作者
Calvo, MP
Iserles, A
Zanna, A
机构
[1] UNIV CAMBRIDGE, DEPT APPL MATH & THEORET PHYS, CAMBRIDGE CB2 1TN, ENGLAND
[2] UNIV VALLADOLID, DEPT MATEMAT APLICADA & COMPUTAC, VALLADOLID, SPAIN
[3] UNIV CAMBRIDGE, NEWNHAM COLL, CAMBRIDGE CB2 1TN, ENGLAND
关键词
D O I
10.1016/S0168-9274(96)00029-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Orthogonal and isospectral flows occur in many applications and they possess important invariants. However, a naive application of Runge-Kutta methods is bound to render these invariants incorrectly. In this paper we describe how to retain relevant invariants with Runge-Kutta methods or, alternatively, incur an error in the rendition of the invariants which is significantly smaller than the overall numerical error.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 2008, 1 COURSE NUMERICAL A
[2]  
[Anonymous], 1988, SYMPLECTIC GEOMETRY
[3]  
[Anonymous], 1994, FIELDS I COMM
[4]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[5]  
CALVO MP, UNPUB SEMIEXPLICIT M
[6]  
CALVO MP, 1995, 1995NA03 DAMTP U CAM
[7]  
CALVO MP, UNPUB NUMERICAL METH
[8]  
CALVO MP, UNPUB CONSERVATIVE M
[9]   STABILITY OF RUNGE-KUTTA METHODS FOR TRAJECTORY PROBLEMS [J].
COOPER, GJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :1-13
[10]   UNITARY INTEGRATORS AND APPLICATIONS TO CONTINUOUS ORTHONORMALIZATION TECHNIQUES [J].
DIECI, L ;
RUSSELL, RD ;
VANVLECK, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) :261-281