Simulation of secondary aerosols over North China in summer

被引:10
作者
Liu, Y [1 ]
Li, WL [1 ]
Zhou, XJ [1 ]
机构
[1] Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
来源
SCIENCE IN CHINA SERIES D-EARTH SCIENCES | 2005年 / 48卷
关键词
secondary aerosol; PM2.5; NH3-;
D O I
10.1360/05yd0405
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The comparisons of observed and simulated NOx, CO, O-3, NH3, HNO3, SO2 and PM2.5 indicate that CMAQ model can simulate variations of pollutants over North China well. Moreover, the model results show that high NH3 is in Hebei, Henan and Shandong provinces, with average concentration of (30-35)x10(-9). The results of the sensitive experiment indicate that high concentration of NH3 has the efficiency of the production of secondary sulfate aerosol increase by more than 30%, especially at the juncture of Handan, Anyang and Changzhi that increased by 50%. In addition, NH3 also produces secondary ammonia and nitrate aerosol, and the sum of them is approximately equal to sulfate aerosol. The height of planetary boundary layer (PBL) in Beijing is higher in daytime, with average height of 1500 m at noon. This makes SO2, NH3 and HNO3 transported into upper PBL of 850 hPa. The high secondary sulfate, and ammonia and nitrate aerosol happen in the upper and lower PBL, respectively. Because PM2.5 lifetime is relatively long, it can be transported into the middle troposphere to form a thick aerosol layer, which is the arched roof of aerosol. The model result suggests that if the aerosol concentration in North China would be controlled, the reduction of NH3 emission is one of efficient ways besides the reduction of primary SO2, NOx and aerosol emission.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 17 条
  • [1] [Anonymous], 2001, Climate Change 2001:Impacts, Adaptation and Vulnerability
  • [2] The Regional Particulate Matter Model .1. Model description and preliminary results
    Binkowski, FS
    Shankar, U
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D12) : 26191 - 26209
  • [3] Byun DW, 1999, J ATMOS SCI, V56, P3808, DOI 10.1175/1520-0469(1999)056<3808:DCFIMA>2.0.CO
  • [4] 2
  • [5] Condensed atmospheric photooxidation mechanisms for isoprene
    Carter, WPL
    [J]. ATMOSPHERIC ENVIRONMENT, 1996, 30 (24) : 4275 - 4290
  • [6] THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS
    COLELLA, P
    WOODWARD, PR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) : 174 - 201
  • [7] Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions
    Perrino, C
    Catrambone, M
    Di Bucchianico, ADM
    Allegrini, I
    [J]. ATMOSPHERIC ENVIRONMENT, 2002, 36 (34) : 5385 - 5394
  • [8] Is daily mortality associated specifically with fine particles?
    Schwartz, J
    Dockery, DW
    Neas, LM
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1996, 46 (10): : 927 - 939
  • [9] SHARON B, 2004, ATMOS ENVIRON, V38, P3469
  • [10] SONG Y, 2002, ENV SCI, V23, P33