Detecting differences between delay vector distributions

被引:97
作者
Diks, C
vanZwet, WR
Takens, F
DeGoede, J
机构
[1] LEIDEN UNIV,DEPT MATH & COMP SCI,2300 RA LEIDEN,NETHERLANDS
[2] UNIV GRONINGEN,DEPT MATH,9700 AV GRONINGEN,NETHERLANDS
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 03期
关键词
D O I
10.1103/PhysRevE.53.2169
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a test for the null hypothesis that two sets of vectors are drawn from the same multidimensional probability distribution. The application to delay vector distributions provides a test for the null hypothesis that two time series have been generated by the same mechanism.
引用
收藏
页码:2169 / 2176
页数:8
相关论文
共 11 条
  • [1] 2-SAMPLE TEST STATISTICS FOR MEASURING DISCREPANCIES BETWEEN 2 MULTIVARIATE PROBABILITY DENSITY-FUNCTIONS USING KERNEL-BASED DENSITY ESTIMATES
    ANDERSON, NH
    HALL, P
    TITTERINGTON, DM
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (01) : 41 - 54
  • [2] REVERSIBILITY AS A CRITERION FOR DISCRIMINATING TIME-SERIES
    DIKS, C
    VANHOUWELINGEN, JC
    TAKENS, F
    DEGOEDE, J
    [J]. PHYSICS LETTERS A, 1995, 201 (2-3) : 221 - 228
  • [3] INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION
    FRASER, AM
    SWINNEY, HL
    [J]. PHYSICAL REVIEW A, 1986, 33 (02): : 1134 - 1140
  • [4] NONLINEAR TIME SEQUENCE ANALYSIS
    Grassberger, Peter
    Schreiber, Thomas
    Schaffrath, Carsten
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 521 - 547
  • [5] QUANTIFYING THE CLOSENESS OF FRACTAL MEASURES
    KANTZ, H
    [J]. PHYSICAL REVIEW E, 1994, 49 (06): : 5091 - 5097
  • [6] THE 3-SIGMA-RULE
    PUKELSHEIM, F
    [J]. AMERICAN STATISTICIAN, 1994, 48 (02) : 88 - 91
  • [7] STATISTICAL PRECISION OF DIMENSION ESTIMATORS
    THEILER, J
    [J]. PHYSICAL REVIEW A, 1990, 41 (06): : 3038 - 3051
  • [8] SPURIOUS DIMENSION FROM CORRELATION ALGORITHMS APPLIED TO LIMITED TIME-SERIES DATA
    THEILER, J
    [J]. PHYSICAL REVIEW A, 1986, 34 (03): : 2427 - 2432
  • [9] THEILER J, 1992, NONLINEAR MODELING F
  • [10] VANZWET WR, 1984, Z WAHRSCHEINLICHKEIT, V66, P425