On the stability of realistic three-body problems

被引:42
作者
Celletti, A [1 ]
Chierchia, L [1 ]
机构
[1] UNIV ROMA TRE,DIPARTIMENTO MATEMAT,I-00146 ROME,ITALY
关键词
D O I
10.1007/s002200050115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the system Sun-Jupiter-Ceres as an example of a planar, circular, restricted three-body problem and, after substituting the mass ratio of Jupiter/Sun (which is approximately 10(-3)) with a parameter epsilon, we prove the existence of stable quasiperiodic motions with frequencies close to the observed (average) frequencies reported in ''The Astronomical Almanac'' for \epsilon\ < 10(-6). The proof is ''computer-assisted''.
引用
收藏
页码:413 / 449
页数:37
相关论文
共 17 条
[1]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P91, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[2]  
ARNOLD VI, 1988, ENCY MATH SCI DYNAMI, V3, P3
[3]   ANALYSIS OF RESONANCES IN THE SPIN-ORBIT PROBLEM IN CELESTIAL MECHANICS - THE SYNCHRONOUS RESONANCE .1. [J].
CELLETTI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (02) :174-204
[4]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161
[5]  
CELLETTI A, 1995, DYNAMICS REPORTED, V4
[6]  
DELAUNAY C, 1860, MEMOIRES ACAD SCI, V1
[7]  
ECKMANN JP, 1985, SPRINGER LECT NOTES, V227
[8]  
Henon M, 1966, B ASTRONOMIQUE, V3, P49
[9]  
John F., 1982, Partial differential equations
[10]  
KOCH H, 1994, COMPUTER ASSISTED PR