Logarithmic barriers for sparse matrix cones

被引:17
作者
Andersen, Martin S. [1 ]
Dahl, Joachim [2 ]
Vandenberghe, Lieven [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] MOSEK ApS, DK-2100 Copenhagen O, Denmark
基金
美国国家科学基金会;
关键词
multifrontal method; sparse matrices; semidefinite programming; 65F05; 65F50; 65K05; 90C06; 90C22; MULTIFRONTAL METHOD; SELECTION; IMPLEMENTATION; SET;
D O I
10.1080/10556788.2012.684353
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivatives are important in interior-point methods for nonsymmetric conic formulations of sparse semidefinite programs. The algorithms are based on the multifrontal method for sparse Cholesky factorization.
引用
收藏
页码:396 / 423
页数:28
相关论文
共 40 条
[1]  
Amestoy P., 2010, TRPA1059 CERFACS
[2]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[3]   Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones [J].
Andersen M.S. ;
Dahl J. ;
Vandenberghe L. .
Mathematical Programming Computation, 2010, 2 (3-4) :167-201
[4]  
[Anonymous], 2010, Advances in neural information processing systems
[5]   THE INFLUENCE OF RELAXED SUPERNODE PARTITIONS ON THE MULTIFRONTAL METHOD [J].
ASHCRAFT, C ;
GRIMES, R .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04) :291-309
[6]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[7]  
Blair Jean R. S., 1993, GRAPH THEORY SPARSE, P1, DOI [DOI 10.1007/978-1-4613-8369-7, DOI 10.1007/978-1-4613-8369-71]
[9]  
Campbell Y., 1995, TR95021 U FLOR COMP
[10]   Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate [J].
Chen, Yanqing ;
Davis, Timothy A. ;
Hager, William W. ;
Rajamanickam, Sivasankaran .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)