Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries

被引:173
作者
Nilsson, EE [1 ]
Kezele, P [1 ]
Skinner, MK [1 ]
机构
[1] Washington State Univ, Sch Mol Biosci, Ctr Reprod Biol, Pullman, WA 99164 USA
基金
美国国家卫生研究院;
关键词
ovary; leukemia inhibitory factor (LIF); primordial follicle; folliculogenesis; growth factors;
D O I
10.1016/S0303-7207(01)00746-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In a sexually mature female, primordial follicles continuously leave the arrested pool and undergo the primordial to primary follicle transition. The oocytes increase in size and the surrounding squamous pre-granulosa cells become cuboidal and proliferate to form a layer of cuboidal cells around the growing oocyte. This development of the primordial follicle commits the follicle to undergo the process of folliculogenesis. When the available pool of primordial follicles is depleted reproductive function ceases and humans enter menopause. The current study examines whether leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition that initiates follicular development. Ovaries from 4 day-old rats were cultured in the absence or presence of LIF or neutralizing antibody to LIF. LIF treatment increased the proportion of follicles that initiated the primordial to primary follicle transition to 59%, compared to 45% in untreated cultured ovaries. The ability of LIF to induce primordial follicle development was enhanced to greater than 75% by the presence of insulin in the culture medium. Anti-LIF neutralizing antibody reduced the proportion of spontaneous developing primordial follicles. Immunocytochemical studies demonstrated higher levels of LIF protein in the granulosa and surrounding somatic cells of primordial and primary follicles compared to the oocyte. In contrast, later pre-antral and antral stage follicles showed LIF expression primarily in the oocyte. In granulosa and theca cell cultures LIF had no effect on cell proliferation. However, LIF treatment did increase expression of Kit ligand (KL) mRNA in cultured granulosa cells. KL has been shown to promote ovarian cell growth and induce primordial follicle development. LIF induction of KL expression may be involved in the actions of LIF to promote primordial to primary follicle transition. In summary, LIF treatment increased the primordial to primary follicle transition in cultured ovaries and LIF may interact with KL to promote primordial follicle development. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 48 条
[1]  
Arici A, 1997, HUM REPROD, V12, P1233
[2]   MULTIPLE REGIONS WITHIN THE CYTOPLASMIC DOMAINS OF THE LEUKEMIA INHIBITORY FACTOR-RECEPTOR AND GP130 COOPERATE IN SIGNAL-TRANSDUCTION IN HEPATIC AND NEURONAL CELLS [J].
BAUMANN, H ;
SYMES, AJ ;
COMEAU, MR ;
MORELLA, KK ;
WANG, YP ;
FRIEND, D ;
ZIEGLER, SF ;
FINK, JS ;
GEARING, DP .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :138-146
[3]   Systemic benefits of cyclic ovarian function [J].
Berga, SL .
JOURNAL OF THE SOCIETY FOR GYNECOLOGIC INVESTIGATION, 2001, 8 (01) :S3-S6
[4]  
Coskun S, 1998, AM J REPROD IMMUNOL, V40, P13
[5]  
CRAN DG, 1980, SCI PROG, V66, P371
[6]   INSULIN ENHANCES FSH-STIMULATED STEROIDOGENESIS BY CULTURED RAT GRANULOSA-CELLS [J].
DAVOREN, JB ;
HSUEH, AJW .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1984, 35 (2-3) :97-105
[7]   mRNA expression of leukaemia inhibitory factor (LIF) and its receptor subunits glycoprotein 130 and LIF-receptor-β in bovine embryos derived in vitro or in vivo [J].
Eckert, J ;
Niemann, H .
MOLECULAR HUMAN REPRODUCTION, 1998, 4 (10) :957-965
[8]   Development in vitro of mouse oocytes from primordial follicles [J].
Eppig, JJ ;
OBrien, MJ .
BIOLOGY OF REPRODUCTION, 1996, 54 (01) :197-207
[9]  
Faddy MJ, 1996, HUM REPROD, V11, P1484
[10]   ACCELERATED DISAPPEARANCE OF OVARIAN FOLLICLES IN MIDLIFE - IMPLICATIONS FOR FORECASTING MENOPAUSE [J].
FADDY, MJ ;
GOSDEN, RG ;
GOUGEON, A ;
RICHARDSON, SJ ;
NELSON, JF .
HUMAN REPRODUCTION, 1992, 7 (10) :1342-1346