Black holes and critical points in moduli space

被引:442
作者
Ferrara, S
Gibbons, GW
Kallosh, R
机构
[1] UNIV CAMBRIDGE, DEPT APPL MATH & THEORET PHYS, CAMBRIDGE CB3 9EW, ENGLAND
[2] STANFORD UNIV, DEPT PHYS, STANFORD, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(97)00324-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the stabilization of scalars near a supersymmetric black hole horizon using the equation of motion of a particle moving in a potential and background metric. When the relevant 4-dimensional theory is described by special geometry, the generic properties of the critical points of this potential can be studied. We find that the extremal value of the central charge provides the minimal value of the BPS mass and of the potential under the condition that the moduli space metric is positive at the critical point. This is a property of a regular special geometry. We also study the critical points in all N greater than or equal to 2 supersymmetric theories. We relate these ideas to the Weinhold and Ruppeiner metrics introduced in the geometric approach to thermodynamics and used for the study of critical phenomena. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:75 / 93
页数:19
相关论文
共 47 条
[1]  
ANDRIANOPOLI L, HEPTH9612105
[2]   STU black holes and string triality [J].
Behrndt, K ;
Kallosh, R ;
Rahmfeld, J ;
Shmakova, M ;
Wong, WK .
PHYSICAL REVIEW D, 1996, 54 (10) :6293-6301
[3]  
Behrndt K, 1997, NUCL PHYS B, V488, P236, DOI 10.1016/S0550-3213(97)00028-X
[4]   Quantum corrections for D=4 black holes and D=5 strings [J].
Behrndt, K .
PHYSICS LETTERS B, 1997, 396 (1-4) :77-84
[5]   ABOUT A CLASS OF EXACT STRING BACKGROUNDS [J].
BEHRNDT, K .
NUCLEAR PHYSICS B, 1995, 455 (1-2) :188-210
[6]  
BEHRNDT K, HEPTH9611140
[7]   4-DIMENSIONAL BLACK-HOLES FROM KALUZA-KLEIN THEORIES [J].
BREITENLOHNER, P ;
MAISON, D ;
GIBBONS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :295-333
[8]   MODULI SPACE OF CALABI-YAU MANIFOLDS [J].
CANDELAS, P ;
DELAOSSA, XC .
NUCLEAR PHYSICS B, 1991, 355 (02) :455-481
[9]   Modular symmetries of N=2 black holes [J].
Cardoso, GL ;
Lust, D ;
Mohaupt, T .
PHYSICS LETTERS B, 1996, 388 (02) :266-272
[10]   SPECIAL KAHLER GEOMETRY - AN INTRINSIC FORMULATION FROM N=2 SPACE-TIME SUPERSYMMETRY [J].
CASTELLANI, L ;
DAURIA, R ;
FERRARA, S .
PHYSICS LETTERS B, 1990, 241 (01) :57-62