Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA

被引:138
作者
Appleby, RD
Porteous, WK
Hughes, G
James, AM
Shannon, D
Wei, YH
Murphy, MP
机构
[1] Univ Otago, Dept Biochem, Dunedin, New Zealand
[2] Natl Yang Ming Univ, Dept Biochem, Taipei 112, Taiwan
[3] Natl Yang Ming Univ, Ctr Cellular & Mol Biol, Taipei 112, Taiwan
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1999年 / 262卷 / 01期
关键词
mammalian rho degrees cells; mitochondrial membrane potential; adenine nucleotide carrier; FoF1-ATP synthase; mitochondrial DNA;
D O I
10.1046/j.1432-1327.1999.00350.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP(4-) for ADP(3-) by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximate to 110 mV in permeabilized cells and approximate to 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximate to 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 49 条