Harmonic crystal on the wall: A microscopic approach

被引:20
作者
Bolthausen, E [1 ]
Ioffe, D [1 ]
机构
[1] WIAS,D-10117 BERLIN,GERMANY
关键词
D O I
10.1007/s002200050148
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A three dimensional Winterbottom type construction in the regime of partial wetting is derived in a scaling limit of a gas of microscopic Gaussian SOS droplets under the fixed volume constraint. The proof is based on a coarse graining of the random microscopic region ''wetted'' by the crystal, random walk representations of various quantities related to free massless fields and a stability analysis of the torsional rigidity problem.
引用
收藏
页码:523 / 566
页数:44
相关论文
共 36 条
[1]   THE WULFF CONSTRUCTION AND ASYMPTOTICS OF THE FINITE CLUSTER DISTRIBUTION FOR 2-DIMENSIONAL BERNOULLI PERCOLATION [J].
ALEXANDER, K ;
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (01) :1-50
[2]  
[Anonymous], 1996, J COMB THEORY, DOI DOI 10.1016/S0021-9800(66)80008-X
[3]  
[Anonymous], 1951, ANN MATH STUD
[4]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[5]  
BENAROUS G, 1995, COMMUN MATH PHYS, V179, P467
[6]   LOCALIZATION OF A 2-DIMENSIONAL RANDOM-WALK WITH AN ATTRACTIVE PATH INTERACTION [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1994, 22 (02) :875-918
[7]  
BOLTHAUSEN E, 1995, ENTROPIC REPULSION L, V3
[8]  
Bramble JH, 1962, Numerische Mathematik, V4, P313
[9]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[10]  
BROTHERS JE, 1994, MICH MATH J, V41, P419