Finite-size errors in continuum quantum Monte Carlo calculations

被引:177
作者
Drummond, N. D. [1 ]
Needs, R. J. [1 ]
Sorouri, A. [2 ]
Foulkes, W. M. C. [2 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, Cambridge CB3 0HE, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevB.78.125106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald energy and (ii) using the model periodic Coulomb (MPC) interaction [L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); P. R. C. Kent et al., Phys. Rev. B 59, 1917 (1999); A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997)] are good solutions to the problem of removing finite-size effects from the interaction energy in cubic systems provided the exchange-correlation (XC) hole has converged with respect to system size. However, we find that the MPC interaction distorts the XC hole in finite systems, implying that the Ewald interaction should be used to generate the configuration distribution. The finite-size correction of Chiesa et al. [Phys. Rev. Lett. 97, 076404 (2006)] is shown to be incomplete in systems of low symmetry. Beyond-leading-order corrections to the kinetic energy are found to be necessary at intermediate and high densities; we investigate the effect of adding such corrections to QMC data for the homogeneous electron gas. We analyze finite-size errors in two-dimensional systems and show that the leading-order behavior differs from that which has hitherto been supposed. We compare the efficiencies of different twist-averaging methods for reducing single-particle finite-size errors and we examine the performance of various finite-size extrapolation formulas. Finally, we investigate the system-size scaling of biases in diffusion QMC.
引用
收藏
页数:19
相关论文
共 40 条
[1]  
ALLEN M, 1990, COMPUTER SIMULATION, P37404
[2]   MEAN-VALUE POINT IN BRILLOUIN ZONE [J].
BALDERESCHI, A .
PHYSICAL REVIEW B, 1973, 7 (12) :5212-5215
[3]   A COLLECTIVE DESCRIPTION OF ELECTRON INTERACTIONS .3. COULOMB INTERACTIONS IN A DEGENERATE ELECTRON GAS [J].
BOHM, D ;
PINES, D .
PHYSICAL REVIEW, 1953, 92 (03) :609-625
[4]   GROUND-STATE OF THE FERMION ONE-COMPONENT PLASMA - MONTE-CARLO STUDY IN 2 AND 3 DIMENSIONS [J].
CEPERLEY, D .
PHYSICAL REVIEW B, 1978, 18 (07) :3126-3138
[5]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[6]   Finite-size error in many-body simulations with long-range interactions [J].
Chiesa, Simone ;
Ceperley, David M. ;
Martin, Richard M. ;
Holzmann, Markus .
PHYSICAL REVIEW LETTERS, 2006, 97 (07)
[7]   Variance-minimization scheme for optimizing Jastrow factors [J].
Drummond, ND ;
Needs, RJ .
PHYSICAL REVIEW B, 2005, 72 (08)
[8]   Jastrow correlation factor for atoms, molecules, and solids [J].
Drummond, ND ;
Towler, MD ;
Needs, RJ .
PHYSICAL REVIEW B, 2004, 70 (23) :1-11
[9]  
Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253
[10]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83