Adaptive smoothing for a penalized NPMLE of a non-increasing density

被引:21
作者
Sun, JY [1 ]
Woodroofe, M [1 ]
机构
[1] UNIV MICHIGAN,DEPT STAT,ANN ARBOR,MI 48109
基金
美国国家科学基金会;
关键词
Brownian motion; non-parametric maximum likelihood; simulation; strong approximation;
D O I
10.1016/0378-3758(95)00114-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A penalized version of the well-known non-parametric maximum likelihood estimator of a non-increasing density f has been developed recently. The penalized version depends on a smoothing parameter, as well as the data. Here some adaptive choices of the smoothing parameter are considered. The asymptotically optimal smoothing parameter depends on f through beta = -1/2F(0)f'(0). In the adaptive procedures, estimates of beta are used to determine the smoothing parameter. Two such procedures are shown to be theoretically correct and practically viable.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 8 条
[1]  
[Anonymous], 1988, Order Restricted Inference
[2]  
Csorgo M., 1981, Probability and Mathematical Statistics
[3]  
Grenander U., 1956, SKAND AKTUARIETIDSK, V39, P125
[4]  
GROENEBOOM P, 1985, P BERK C HON NEYM KI, V2, P529
[5]  
KOMIOS JP, 1975, ZEIT WAHR, V32, P111
[6]  
PRAKASARAO BLS, 1983, NONPARAMETRIC FUNCTI
[7]  
PRAKASARAO BLS, 1969, SANKHYA, V31, P23
[8]  
WOODROOFE M, 1993, STAT SINICA, V3, P501