AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML

被引:180
作者
Pearce, DJ
Taussig, D
Zilbara, K
Smith, LL
Ridler, CM
Preudhomme, C
Young, BD
Rohatiner, AZ
Lister, TA
Bonnet, D
机构
[1] London Res Inst, Hematopoiet Stem Cell Lab, London WC2A 3PX, England
[2] St Bartholomews Hosp, Canc Res Uk Med Oncol Unit, London, England
[3] Queen Mary & St Bartholomews Med Sch, Canc Res UK, Med Oncol Lab, London, England
关键词
D O I
10.1182/blood-2005-06-2325
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The nonobese diabetic/severe combined immunodeficient (NOD/SCID) assay is the current model for assessment of human normal and leukemic stem cells. We explored why 51% of 59 acute myeloid leukemia (AML) patients were unable to initiate leukemia in NOD/SCID mice. Increasing the cell dose, using more permissive recipients, and alternative tissue sources did not cause AML engraftment in most previously nonengrafting AML samples. Homing of AML cells to the marrow was the same between engrafters and nonengrafters. FLT3 internal tandem duplication (ITD) and nucleophosmin mutations occurred at a similar frequency in engrafters and nonengrafters. The only variable that was related to engraftment ability was the karyotypically defined risk stratification of individual AML cases. Of interest, follow-up of younger patients with intermediate-risk AML revealed a significant difference in overall survival between NOD/SCID engrafting and nonengrafting AMLs. Hence, the ability of AML to engraft in the NOD/SCID assay seems to be an inherent property of AML cells, independent of homing, conditioning, or cell frequency/source, which is directly related to prognosis. Our results suggest an important difference between leukemic initiating cells between engrafting and nonengrafting AML cases that correlates with treatment response.
引用
收藏
页码:1166 / 1173
页数:8
相关论文
共 31 条
[1]   Genomic structure of human FLT3:: Implications for mutational analysis [J].
Abu-Duhier, FM ;
Goodeve, AC ;
Wilson, GA ;
Care, RS ;
Peake, IR ;
Reilly, JT .
BRITISH JOURNAL OF HAEMATOLOGY, 2001, 113 (04) :1076-1077
[2]   Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice [J].
Ailles, LE ;
Gerhard, B ;
Kawagoe, M ;
Hogge, DE .
BLOOD, 1999, 94 (05) :1761-1772
[3]   Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance [J].
Alcalay, M ;
Tiacci, E ;
Bergomas, R ;
Bigerna, B ;
Venturini, E ;
Minardi, SP ;
Meani, N ;
Diverio, D ;
Bernard, L ;
Tizzoni, L ;
Volorio, S ;
Luzi, L ;
Colombo, E ;
Lo Coco, F ;
Mecucci, C ;
Falini, B ;
Pelicci, PG .
BLOOD, 2005, 106 (03) :899-902
[4]   A newly discovered class of human hematopoietic cells with SCID-repopulating activity [J].
Bhatia, M ;
Bonnet, D ;
Murdoch, B ;
Gan, OI ;
Dick, JE .
NATURE MEDICINE, 1998, 4 (09) :1038-1045
[5]   Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice [J].
Bhatia, M ;
Wang, JCY ;
Kapp, U ;
Bonnet, D ;
Dick, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5320-5325
[6]   Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo [J].
Blair, A ;
Hogge, DE ;
Ailles, LE ;
Lansdorp, PM ;
Sutherland, HJ .
BLOOD, 1997, 89 (09) :3104-3112
[7]   Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71-/HLA-DR- [J].
Blair, A ;
Hogge, DE ;
Sutherland, HJ .
BLOOD, 1998, 92 (11) :4325-4335
[8]   Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD 117) [J].
Blair, A ;
Sutherland, HJ .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (06) :660-671
[9]  
BOISSEL N, 2005, BLOOD
[10]   Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J].
Bonnet, D ;
Dick, JE .
NATURE MEDICINE, 1997, 3 (07) :730-737