Critical exponents near a random fractal boundary

被引:14
作者
Cardy, J
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3NP, England
[2] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 16期
关键词
D O I
10.1088/0305-4470/32/16/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behaviour of correlation functions near a boundary is modified from that in the bulk. When the boundary is smooth this is known to be characterized by the surface scaling dimension (x) over tilde. We consider the case when the boundary is a random fractal, specifically a self-avoiding walk or the frontier of a Brownian walk, in two dimensions, and show that the boundary scaling behaviour of the correlation function is characterized by a set of multifractal boundary exponents, given exactly by conformal invariance arguments to be lambda(n) = 1/48(root 1 + 24n (x) over tilde + 11)(root 1 + 24n (x) over tilde - 1). This result may be interpreted in terms of a scale-dependent distribution of opening angles a of the fractal boundary: on short distance scales these are sharply peaked around alpha = pi/3. Similar arguments give the multifractal exponents for the case of coupling to a quenched random bulk geometry.
引用
收藏
页码:L177 / L182
页数:6
相关论文
共 18 条
[1]  
AIZENMAN M, 1999, CONDMAT9901018
[2]   QUENCHING 2D QUANTUM-GRAVITY [J].
BAILLIE, CF ;
HAWICK, KA ;
JOHNSTON, DA .
PHYSICS LETTERS B, 1994, 328 (3-4) :284-290
[3]   CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1984, 240 (04) :514-532
[4]   CRITICAL-BEHAVIOR AT AN EDGE [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :3617-3628
[5]   CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :L385-L387
[6]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[7]  
CARDY JL, 1989, ADV STUDIES PURE MAT, V19, P127
[8]   DIFFUSION NEAR ABSORBING FRACTALS - HARMONIC MEASURE EXPONENTS FOR POLYMERS [J].
CATES, ME ;
WITTEN, TA .
PHYSICAL REVIEW A, 1987, 35 (04) :1809-1824
[9]   FAMILY OF EXPONENTS FOR LAPLACE EQUATION NEAR A POLYMER [J].
CATES, ME ;
WITTEN, TA .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2497-2500
[10]  
Diehl H. W., 1986, PHASE TRANSITIONS CR