ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen

被引:686
作者
Kuruppu, M. D. [1 ]
Obara, Y. [2 ]
Ayatollahi, M. R. [3 ]
Chong, K. P. [4 ,5 ]
Funatsu, T. [6 ]
机构
[1] Curtin Univ, Kalgoorlie, WA 6433, Australia
[2] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan
[3] Iran Univ Sci & Technol, Sch Mech Engn, Tehran 16846, Iran
[4] NIST, Gaithersburg, MD 20899 USA
[5] George Washington Univ, Dept Mech Engn, Washington, DC 20052 USA
[6] AIST, Inst Georesources & Environm, Tsukuba, Ibaraki 3058567, Japan
关键词
Rock fracture mechanics; Mode I fracture toughness; Semi-circular bend specimen; Fracture testing; Sedimentary rock; In situ environment; ROCK; PARAMETERS; GEOMETRY;
D O I
10.1007/s00603-013-0422-7
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core-based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semi-circular bend specimen is herein presented. The specimen is semi-circular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied.
引用
收藏
页码:267 / 274
页数:8
相关论文
共 29 条
[1]   Geometry effects and statistical analysis of mode I fracture in guiting limestone [J].
Aliha, M. R. M. ;
Sistaninia, M. ;
Smith, D. J. ;
Pavier, M. J. ;
Ayatollahi, M. R. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2012, 51 :128-135
[2]  
[Anonymous], 2007, The complete ISRM Suggested Mehtods for Rock Characterization, Testing, and Monitoring: 1974-2006, DOI DOI 10.1007/978-3-319-07713-0
[3]   Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading [J].
Ayatollahi, M. R. ;
Aliha, M. R. M. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (04) :660-670
[4]   ISRM Suggested Method for the Determination of Mode II Fracture Toughness [J].
Backers, Tobias ;
Stephansson, Ove .
ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (06) :1011-1022
[5]  
Basham KD, 1989, THESIS U WYOMING US
[6]  
BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518
[7]   FRACTURE-TOUGHNESS DETERMINATION OF LAYERED MATERIALS [J].
CHONG, KP ;
KURUPPU, MD ;
KUSZMAUL, JS .
ENGINEERING FRACTURE MECHANICS, 1987, 28 (01) :43-54
[8]  
Dassault Systemes, 2012, AB UN FEA
[9]   Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks [J].
Funatsu, T ;
Seto, M ;
Shimada, H ;
Matsui, K ;
Kuruppu, M .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2004, 41 (06) :927-938
[10]   EFFECTS OF CHEMICAL SOLUTIONS ON ROCK FRACTURING [J].
KARFAKIS, MG ;
AKRAM, M .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES & GEOMECHANICS ABSTRACTS, 1993, 30 (07) :1253-1259