Warming and drying suppress microbial activity and carbon cycling in boreal forest soils

被引:507
作者
Allison, Steven D. [1 ]
Treseder, Kathleen K.
机构
[1] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
bacteria; boreal forest; climate change; extracellular enzyme; microbial community; mycorrhizal fungi; nitrogen availability; nucleotide analog; soil respiration; warming;
D O I
10.1111/j.1365-2486.2008.01716.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Climate warming is expected to have particularly strong effects on tundra and boreal ecosystems, yet relatively few studies have examined soil responses to temperature change in these systems. We used closed-top greenhouses to examine the response of soil respiration, nutrient availability, microbial abundance, and active fungal communities to soil warming in an Alaskan boreal forest dominated by mature black spruce. This treatment raised soil temperature by 0.5 degrees C and also resulted in a 22% decline in soil water content. We hypothesized that microbial abundance and activity would increase with the greenhouse treatment. Instead, we found that bacterial and fungal abundance declined by over 50%, and there was a trend toward lower activity of the chitin-degrading enzyme N-acetyl-glucosaminidase. Soil respiration also declined by up to 50%, but only late in the growing season. These changes were accompanied by significant shifts in the community structure of active fungi, with decreased relative abundance of a dominant Thelephoroid fungus and increased relative abundance of Ascomycetes and Zygomycetes in response to warming. In line with our hypothesis, we found that warming marginally increased soil ammonium and nitrate availability as well as the overall diversity of active fungi. Our results indicate that rising temperatures in northern-latitude ecosystems may not always cause a positive feedback to the soil carbon cycle, particularly in boreal forests with drier soils. Models of carbon cycle-climate feedbacks could increase their predictive power by incorporating heterogeneity in soil properties and microbial communities across the boreal zone.
引用
收藏
页码:2898 / 2909
页数:12
相关论文
共 47 条
[1]  
*ACIA, 2004, IMP WARM ARCT
[2]  
Alexopoulos C. J., 1996
[3]   Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest [J].
Allison, Steven D. ;
Czimczik, Claudia I. ;
Treseder, Kathleen K. .
GLOBAL CHANGE BIOLOGY, 2008, 14 (05) :1156-1168
[4]   Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems [J].
Allison, Steven D. ;
Hanson, China A. ;
Treseder, Kathleen K. .
SOIL BIOLOGY & BIOCHEMISTRY, 2007, 39 (08) :1878-1887
[5]   Activities of extracellular enzymes in physically isolated fractions of restored grassland soils [J].
Allison, Steven D. ;
Jastrow, Julie D. .
SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (11) :3245-3256
[6]  
[Anonymous], 1989, Cladistics, DOI DOI 10.1111/J.1096-0031.1989.TB00562.X
[7]   Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest [J].
Bergner, B ;
Johnstone, J ;
Treseder, KK .
GLOBAL CHANGE BIOLOGY, 2004, 10 (12) :1996-2004
[8]   PCR primers that amplify fungal rRNA genes from environmental samples [J].
Borneman, J ;
Hartin, RJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (10) :4356-4360
[9]  
Borneman J, 1999, APPL ENVIRON MICROB, V65, P3398
[10]   Response of soil surface CO2 flux in a boreal forest to ecosystem warming [J].
Bronson, Dustin R. ;
Gower, Stith T. ;
Tanner, Myron ;
Linder, Sune ;
Van Herk, Ingrid .
GLOBAL CHANGE BIOLOGY, 2008, 14 (04) :856-867