Nanopore Analysis of Wild-Type and Mutant Prion Protein (PrPC): Single Molecule Discrimination and PrPC Kinetics

被引:11
作者
Jetha, Nahid N. [1 ]
Semenchenko, Valentyna [2 ]
Wishart, David S. [2 ,3 ,4 ]
Cashman, Neil R. [5 ]
Marziali, Andre [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada
[2] Natl Inst Nanotechnol, Edmonton, AB, Canada
[3] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[4] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
[5] Univ British Columbia, Brain Res Ctr, Vancouver, BC V5Z 1M9, Canada
来源
PLOS ONE | 2013年 / 8卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
CREUTZFELDT-JAKOB-DISEASE; HIDDEN MARKOV-MODELS; FATAL FAMILIAL INSOMNIA; DNA HAIRPIN MOLECULES; CONFORMATIONAL CONVERSION; DYNAMICS SIMULATIONS; ION-CHANNEL; SCRAPIE; PORE; POLYMORPHISM;
D O I
10.1371/journal.pone.0054982
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic alpha-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event. Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules [J].
Akeson, M ;
Branton, D ;
Kasianowicz, JJ ;
Brandin, E ;
Deamer, DW .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3227-3233
[2]   Mapping the early steps in the pH-induced conformational conversion of the prion protein [J].
Alonso, DOV ;
DeArmond, SJ ;
Cohen, FE ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2985-2989
[3]   Atypical effect of salts on the thermodynamic stability of human prion protein [J].
Apetri, AC ;
Surewicz, WK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (25) :22187-22192
[4]   Misfolding pathways of the prion protein probed by molecular dynamics Simulations [J].
Barducci, A ;
Chelli, R ;
Procacci, P ;
Schettino, V .
BIOPHYSICAL JOURNAL, 2005, 88 (02) :1334-1343
[5]   Detailed Biophysical Characterization of the Acid-Induced PrPc to PrPβ Conversion Process [J].
Bjorndahl, Trent C. ;
Zhou, Guo-Ping ;
Liu, Xuehui ;
Perez-Pineiro, Rolando ;
Semenchenko, Valentyna ;
Saleem, Fozia ;
Acharya, Sandipta ;
Bujold, Adina ;
Sobsey, Constance A. ;
Wishart, David S. .
BIOCHEMISTRY, 2011, 50 (07) :1162-1173
[6]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[7]   Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies [J].
Caughey, B ;
Raymond, GJ ;
Kocisko, DA ;
Lansbury, PT .
JOURNAL OF VIROLOGY, 1997, 71 (05) :4107-4110
[8]   Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state [J].
Caughey, B ;
Kocisko, DA ;
Raymond, GJ ;
Lansbury, PT .
CHEMISTRY & BIOLOGY, 1995, 2 (12) :807-817
[9]   CHARACTERIZATION OF SINGLE CHANNEL CURRENTS USING DIGITAL SIGNAL-PROCESSING TECHNIQUES BASED ON HIDDEN MARKOV-MODELS [J].
CHUNG, SH ;
MOORE, JB ;
XIA, L ;
PREMKUMAR, LS ;
GAGE, PW .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1990, 329 (1254) :265-285
[10]   Clustering ionic flow blockade toggles with a Mixture of HMMs [J].
Churbanov, Alexander ;
Winters-Hilt, Stephen .
BMC BIOINFORMATICS, 2008, 9 (Suppl 9)