Further understanding human disease genes by comparing with housekeeping genes and other genes

被引:110
作者
Tu, ZD [1 ]
Wang, L [1 ]
Xu, M [1 ]
Zhou, XH [1 ]
Chen, T [1 ]
Sun, FZ [1 ]
机构
[1] Univ So Calif, Mol & Computat Biol Program, Los Angeles, CA 90089 USA
关键词
D O I
10.1186/1471-2164-7-31
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Several studies have compared various features of heritable disease genes with other so called non-disease genes, but they have yielded some conflicting results. A potential problem in those studies is that the non-disease genes contained a large number of essential genes - genes which are indispensable for humans to survive and reproduce. Since a functional disruption of an essential gene has fatal consequences, it's more reasonable to regard essential genes as extremely severe "disease" genes. Here we perform a comparative study on the features of human essential, disease, and other genes. Results: In the absence of a set of well defined human essential genes, we consider a set of 1,789 ubiquitously expressed human genes (UEHGs), also known as housekeeping genes, as an approximation. We demonstrate that UEHGs are very likely to contain a large proportion of essential genes. We show that the UEHGs, disease genes and other genes are different in their evolutionary conservation rates, DNA coding lengths, gene functions, etc. Our findings systematically confirm that disease genes have an intermediate essentiality which is less than housekeeping genes but greater than other human genes. Conclusion: The human genome may contain thousands of essential genes having features which differ significantly from disease and other genes. We propose to classify them as a unique group for comparisons of disease genes with non-disease genes. This new way of classification and comparison enables us to have a clearer understanding of disease genes.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Speeding disease gene discovery by sequence based candidate prioritization [J].
Adie, EA ;
Adams, RR ;
Evans, KL ;
Porteous, DJ ;
Pickard, BS .
BMC BIOINFORMATICS, 2005, 6 (1)
[2]   MGD: the Mouse Genome Database [J].
Blake, JA ;
Richardson, JE ;
Bult, RJ ;
Kadin, JA ;
Eppig, JT .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :193-195
[3]   Disease genes and intracellular protein networks [J].
Bortoluzzi, S ;
Romualdi, C ;
Bisognin, A ;
Danieli, GA .
PHYSIOLOGICAL GENOMICS, 2003, 15 (03) :223-227
[4]   Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes [J].
Bourque, G ;
Pevzner, PA ;
Tesler, G .
GENOME RESEARCH, 2004, 14 (04) :507-516
[5]   Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues" [J].
Butte, AJ ;
Dzau, VJ ;
Glueck, SB .
PHYSIOLOGICAL GENOMICS, 2001, 7 (02) :95-96
[6]  
Carroll R. J., 1988, TRANSFORMATION WEIGH
[7]  
Castresana J, 2002, GENOME BIOL, V3
[8]   WormBase:: a comprehensive data resource for Caenorhabditis biology and genomics [J].
Chen, NS ;
Harris, TW ;
Antoshechkin, I ;
Bastiani, C ;
Bieri, T ;
Blasiar, D ;
Bradnam, K ;
Canaran, P ;
Chan, J ;
Chen, CK ;
Chen, WJ ;
Cunningham, F ;
Davis, P ;
Kenny, E ;
Kishore, R ;
Lawson, D ;
Lee, R ;
Muller, HM ;
Nakamura, C ;
Pai, S ;
Ozersky, P ;
Petcherski, A ;
Rogers, A ;
Sab, A ;
Schwarz, EM ;
Van Auken, K ;
Wang, QH ;
Durbin, R ;
Spieth, J ;
Sternberg, PW ;
Stein, LD .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D383-D389
[9]   SGD:: Saccharomyces Genome Database [J].
Cherry, JM ;
Adler, C ;
Ball, C ;
Chervitz, SA ;
Dwight, SS ;
Hester, ET ;
Jia, YK ;
Juvik, G ;
Roe, T ;
Schroeder, M ;
Weng, SA ;
Botstein, D .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :73-79
[10]   Comparison of the complete protein sets of worm and yeast: Orthology and divergence [J].
Chervitz, SA ;
Aravind, L ;
Sherlock, G ;
Ball, CA ;
Koonin, EV ;
Dwight, SS ;
Harris, MA ;
Dolinski, K ;
Mohr, S ;
Smith, T ;
Weng, S ;
Cherry, JM ;
Botstein, D .
SCIENCE, 1998, 282 (5396) :2022-2028