Activation of peptide ions by blackbody radiation: Factors that lead to dissociation kinetics in the rapid energy exchange limit

被引:104
作者
Price, WD [1 ]
Williams, ER [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720
关键词
D O I
10.1021/jp9722418
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)(n) (n = 2-32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very ''tight'' (A(infinity) 10(9.9) s(-1)) to ''loose'' (A(infinity) = 10(16.8) s(-1)) were selected to represent dissociation parameters within the experimental temperature range (300-520 K) and kinetic window (k(uni) = 0.001-0.20 s(-1)) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX Limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules.
引用
收藏
页码:8844 / 8852
页数:9
相关论文
共 55 条
[1]   EXPERIMENTAL INVESTIGATIONS OF FACTORS CONTROLLING THE COLLISION-INDUCED DISSOCIATION SPECTRA OF PEPTIDE IONS IN A TANDEM HYBRID MASS-SPECTROMETER .1. LEUCINE ENKEPHALIN [J].
ALEXANDER, AJ ;
BOYD, RK .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1989, 90 (03) :211-240
[2]   Gas-phase ion dynamics and chemistry [J].
Armentrout, PB ;
Baer, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :12866-12877
[3]   DISSOCIATION DYNAMICS OF NORMAL-BUTYLBENZENE IONS - THE COMPETITIVE PRODUCTION OF M/Z 91-FRAGMENT AND 92-FRAGMENT IONS [J].
BAER, T ;
DUTUIT, O ;
MESTDAGH, H ;
ROLANDO, C .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (20) :5674-5679
[4]   MASS-SPECTROMETRIC DETERMINATION OF THE AMINO-ACID-SEQUENCE OF PEPTIDES AND PROTEINS [J].
BIEMANN, K ;
MARTIN, SA .
MASS SPECTROMETRY REVIEWS, 1987, 6 (01) :1-75
[5]   ACTIVATION-ENERGIES FOR GAS-PHASE DISSOCIATIONS OF MULTIPLY CHARGED IONS FROM ELECTROSPRAY IONIZATION MASS-SPECTROMETRY [J].
BUSMAN, M ;
ROCKWOOD, AL ;
SMITH, RD .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (06) :2397-2400
[6]   KINETICS OF THERMAL UNIMOLECULAR DISSOCIATION BY AMBIENT INFRARED RADIATION [J].
DUNBAR, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (35) :8705-8712
[7]   Zero-pressure thermal-radiation-induced dissociation of gas-phase cluster ions: Comparison of theory and experiment for (H2O)(2)Cl(-) and (H2O)(3)Cl(-) [J].
Dunbar, RC ;
McMahon, TB ;
Tholmann, D ;
Tonner, DS ;
Salahub, DR ;
Wei, DQ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (51) :12819-12825
[8]   KINETICS OF LOW-INTENSITY INFRARED-LASER PHOTODISSOCIATION - THE THERMAL-MODEL AND APPLICATION OF THE TOLMAN THEOREM [J].
DUNBAR, RC .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (04) :2537-2548
[9]   COLLISION ENERGY EFFECTS ON THE COLLISION-INDUCED DISSOCIATION OF MULTIPLY-CHARGED MELITTIN [J].
FABRIS, D ;
KELLY, M ;
WU, ZC ;
FENSELAU, C .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1994, 8 (09) :791-795
[10]   ELECTROSPRAY IONIZATION FOR MASS-SPECTROMETRY OF LARGE BIOMOLECULES [J].
FENN, JB ;
MANN, M ;
MENG, CK ;
WONG, SF ;
WHITEHOUSE, CM .
SCIENCE, 1989, 246 (4926) :64-71