The SIESTA method for ab initio order-N materials simulation

被引:11492
作者
Soler, JM [1 ]
Artacho, E
Gale, JD
García, A
Junquera, J
Ordejón, P
Sánchez-Portal, D
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[4] Univ Basque Country, Dept Fis Mat Condensada, E-48080 Bilbao, Spain
[5] Univ Liege, Inst Phys, B-4000 Sart Tilman Par Liege, Belgium
[6] CSIC, Inst Ciencia Mat Barcelona, E-08193 Barcelona, Spain
[7] UPV, EHU, Fac Quim, Dept Fis Mat, Donostia San Sebastian 20080, Spain
[8] UPV, EHU, Fac Quim, DIPC, Donostia San Sebastian 20080, Spain
关键词
D O I
10.1088/0953-8984/14/11/302
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.
引用
收藏
页码:2745 / 2779
页数:35
相关论文
共 82 条
[1]  
Abramowitz M, 1964, Handbook of Mathematical Functions
[2]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]  
Anderson E., 1999, LAPACK USERS GUIDE
[4]  
Artacho E, 1999, PHYS STATUS SOLIDI B, V215, P809, DOI 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO
[5]  
2-0
[6]   PSEUDOPOTENTIALS THAT WORK - FROM H TO PU [J].
BACHELET, GB ;
HAMANN, DR ;
SCHLUTER, M .
PHYSICAL REVIEW B, 1982, 26 (08) :4199-4228
[7]   RELATIVISTIC NORM-CONSERVING PSEUDOPOTENTIALS [J].
BACHELET, GB ;
SCHLUTER, M .
PHYSICAL REVIEW B, 1982, 25 (04) :2103-2108
[8]   Evaluation of exchange-correlation energy, potential, and stress -: art. no. 165110 [J].
Balbás, LC ;
Martins, JL ;
Soler, JM .
PHYSICAL REVIEW B, 2001, 64 (16)
[9]  
Binder K., 1992, MONTE CARLO SIMULATI
[10]   GENERALIZED SEPARABLE POTENTIALS FOR ELECTRONIC-STRUCTURE CALCULATIONS [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1990, 41 (08) :5414-5416