Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis

被引:80
作者
Igari, Kadunari [1 ]
Endo, Sachiko [1 ]
Hibara, Ken-ichiro [1 ]
Aida, Mitsuhiro [1 ]
Sakakibara, Hitoshi [1 ]
Kawasaki, Tsutomu [1 ]
Tasaka, Masao [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300192, Japan
关键词
axillary meristem; R gene; disease resistance; salicylic acid; cytokinin;
D O I
10.1111/j.1365-313X.2008.03466.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses.
引用
收藏
页码:14 / 27
页数:14
相关论文
共 60 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[3]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[4]   Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1 [J].
Belkhadir, Y ;
Nimchuk, Z ;
Hubert, DA ;
Mackey, D ;
Dangl, JL .
PLANT CELL, 2004, 16 (10) :2822-2835
[5]   Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato [J].
Bendahmane, A ;
Farnham, G ;
Moffett, P ;
Baulcombe, DC .
PLANT JOURNAL, 2002, 32 (02) :195-204
[6]   RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance [J].
Bieri, S ;
Mauch, S ;
Shen, QH ;
Peart, J ;
Devoto, A ;
Casais, C ;
Ceron, F ;
Schulze, S ;
Steinbiss, HH ;
Shirasu, K ;
Schulze-Lefert, P .
PLANT CELL, 2004, 16 (12) :3480-3495
[7]   Modulation of Bax Inhibitor-1 and cytosolic Ca2+ by cytokinins in Nicotiana tabacum cells [J].
Bolduc, Nathalie ;
Lamb, Gregory N. ;
Cessna, Stephen G. ;
Brisson, Louise F. .
BIOCHIMIE, 2007, 89 (08) :961-971
[8]   High levels of the cytokinin BAP induce PCD by accelerating senescence [J].
Carimi, F ;
Terzi, M ;
De Michele, R ;
Zottini, M ;
Lo Schiavo, F .
PLANT SCIENCE, 2004, 166 (04) :963-969
[9]   Cytokinins: new apoptotic inducers in plants [J].
Carimi, F ;
Zottini, M ;
Formentin, E ;
Terzi, M ;
Lo Schiavo, F .
PLANTA, 2003, 216 (03) :413-421
[10]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601