Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation

被引:402
作者
Saleh, A
Srinivasula, SM
Acharya, S
Fishel, R
Alnemri, ES
机构
[1] Thomas Jefferson Univ, Kimmel Canc Inst, Ctr Apoptosis Res, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Kimmel Canc Inst, Dept Microbiol & Immunol, Philadelphia, PA 19107 USA
关键词
D O I
10.1074/jbc.274.25.17941
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we produced recombinant full-length Apaf-1 and purified it to complete homogeneity, Here we show using gel filtration that full-length Apaf-1 exists as a monomer that can be transformed to an oligomeric complex made of at least eight subunits after binding to cytochrome c and dATP, Apaf-1 binds to cytochrome c in the absence of dATP but does not form the oligomeric complex. However, when dATP is added to the cytochrome c-bound Apaf-1 complex, complete oligomerization occurs, suggesting that oligomerization is driven by hydrolysis of dATP, This was supported by the observation that ATP, but not the nonhydrolyzable adenosine 5'-O-(thiotriphosphate), can induce oligomerization of the Apaf-1-cytochrome c complex. Like the spontaneously oligomerizing Apaf-530, which lacks its WD-40 domain, the oligomeric full-length Apaf-1-cytochrome c complex can bind and process procaspase-9 in the absence of additional dATP or cytochrome c, However, unlike the truncated Apaf-530 compiler, the full-length Apaf-1 complex can release the mature caspase-9 after processing. Once released, mature caspase-9 can process procaspase-3, setting into motion the caspase cascade. These observations indicate that cytochrome c and dATP are required for oligomerization of Apaf-1 and suggest that the WD-40 domain plays an important role in oligomerization of full-length Apaf-1 and the release of mature caspase-9 from the Apaf-1 oligomeric complex.
引用
收藏
页码:17941 / 17945
页数:5
相关论文
共 16 条
  • [1] Death receptors: Signaling and modulation
    Ashkenazi, A
    Dixit, VM
    [J]. SCIENCE, 1998, 281 (5381) : 1305 - 1308
  • [2] Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development
    Cecconi, F
    Alvarez-Bolado, G
    Meyer, BI
    Roth, KA
    Gruss, P
    [J]. CELL, 1998, 94 (06) : 727 - 737
  • [3] Caspases: the executioners of apoptosis
    Cohen, GM
    [J]. BIOCHEMICAL JOURNAL, 1997, 326 : 1 - 16
  • [4] Proteases to die for
    Cryns, V
    Yuan, JY
    [J]. GENES & DEVELOPMENT, 1998, 12 (11) : 1551 - 1570
  • [5] The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch
    Gradia, S
    Acharya, S
    Fishel, R
    [J]. CELL, 1997, 91 (07) : 995 - 1005
  • [6] Apoptotic pathways: The roads to ruin
    Green, DR
    [J]. CELL, 1998, 94 (06) : 695 - 698
  • [7] Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade
    Li, P
    Nijhawan, D
    Budihardjo, I
    Srinivasula, SM
    Ahmad, M
    Alnemri, ES
    Wang, XD
    [J]. CELL, 1997, 91 (04) : 479 - 489
  • [8] Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c
    Liu, XS
    Kim, CN
    Yang, J
    Jemmerson, R
    Wang, XD
    [J]. CELL, 1996, 86 (01) : 147 - 157
  • [9] An induced proximity model for caspase-8 activation
    Muzio, M
    Stockwell, BR
    Stennicke, HR
    Salvesen, GS
    Dixit, VM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (05) : 2926 - 2930
  • [10] Caspases: Intracellular signaling by proteolysis
    Salvesen, GS
    Dixit, VM
    [J]. CELL, 1997, 91 (04) : 443 - 446