Chromatin, a huge polymer of nucleosomes, has been implicated as an important target of autoantibodies in idiopathic and drug-induced lupus for decades, but the antigenicity of chromatin has only recently been dissected. IgG reactivity with the (H2A-H2B)-DNA complex, a subunit of the nucleosome, is present in the majority of patients with systemic lupus erythematosus, in >90% of patients with lupus induced by procainamide and in individual patients with lupus induced by a variety of other drugs, but is not seen in people taking these medications who are clinically asymptomatic. Anti-[(H2A-H2B)-DNA] accounted for the bulk of the anti-chromatin activity in drug-induced lupus. The earliest detectable autoantibody in lupus-prone mice recognized similar epitopes in the (H2A-H2B)-DNA subnucleosome complex; as the immune response progressed, native DNA and other constituents of chromatin became antigenic. The importance of chromatin-reactive T cells in the anti-[(H2A-H2B)-DNA] response is suggested by the presence of somatic mutations in antibody V-H and V-L regions, their predominant IgG isotype and the similarity in kinetics of their production to that of conventional T cell dependent antigens. Together with the serologic data from human lupus-like disease, these results are consistent with chromatin being a common stimulant for both B and T cells. While chromatin-reactive antibodies are closely associated with systemic disease and have recently been implicated in glomerulonephritis in SLE, the absence of renal disease in drug-induced lupus indicates that additional abnormalities are required to manifest the serious pathogenic potential of anti-[(H2A-H2B)-DNA] antibodies.