Titan's 3-micron spectral region from ISO high-resolution spectroscopy

被引:64
作者
Coustenis, A
Negrao, A
Salama, A
Schulz, B
Lellouch, E
Rannou, P
Drossart, P
Encrenaz, T
Schmitt, B
Boudon, V
Nikitin, A
机构
[1] Observ Paris, LESIA, F-92195 Meudon, France
[2] CALTECH, Pasadena, CA 91125 USA
[3] European Space Agcy, ISO Data Ctr, Madrid 28080, Spain
[4] Univ Paris 06, CNRS, Serv Aeron, F-75252 Paris 05, France
[5] Univ Versailles, F-78000 Versailles, France
[6] Lab Planetol Grenoble, F-38041 Grenoble 9, France
[7] Univ Lisbon, Fac Ciencias, Astron Observ, P-1749016 Lisbon, Portugal
[8] Univ Bourgogne, CNRS, UMR 5027, Phys Lab, F-21078 Dijon, France
[9] Russian Acad Sci, Inst Atmospher Opt, Lab Theoret Spect, Tomsk 634055, Russia
关键词
titan; satellites of Saturn; surfaces; satellite; infrared observations; ISO;
D O I
10.1016/j.icarus.2005.08.007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 mu m) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-63 1; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 mu m region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-mu m window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 mu m region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P, 1998. J. Quant. Spectrosc. Radial. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loete, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 51 条
[1]   Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups [J].
Boudon, V ;
Champion, JP ;
Gabard, T ;
Loëte, M ;
Michelot, F ;
Pierre, G ;
Rotger, M ;
Wenger, C ;
Rey, M .
JOURNAL OF MOLECULAR SPECTROSCOPY, 2004, 228 (02) :620-634
[2]  
BROWN R, 2005, UNPUB ASTRON ASTROPH
[3]   FRACTAL AGGREGATES IN TITAN ATMOSPHERE [J].
CABANE, M ;
RANNOU, P ;
CHASSEFIERE, E ;
ISRAEL, G .
PLANETARY AND SPACE SCIENCE, 1993, 41 (04) :257-267
[4]   FORMATION AND GROWTH OF PHOTOCHEMICAL AEROSOLS IN TITANS ATMOSPHERE [J].
CABANE, M ;
CHASSEFIERE, E ;
ISRAEL, G .
ICARUS, 1992, 96 (02) :176-189
[5]   UV SPECTROSCOPY OF TITANS ATMOSPHERE, PLANETARY ORGANIC-CHEMISTRY AND PREBIOLOGICAL SYNTHESIS .2. INTERPRETATION OF NEW IUE OBSERVATIONS IN THE 220-335 NM RANGE [J].
COURTIN, R ;
WAGENER, R ;
MCKAY, CP ;
CALDWELL, J ;
FRICKE, KH ;
RAULIN, F ;
BRUSTON, P .
ICARUS, 1991, 90 (01) :43-56
[6]   TITANS SURFACE - COMPOSITION AND VARIABILITY FROM THE NEAR-INFRARED ALBEDO [J].
COUSTENIS, A ;
LELLOUCH, E ;
MAILLARD, JP ;
MCKAY, CP .
ICARUS, 1995, 118 (01) :87-104
[7]   Titan's atmosphere from ISO mid-infrared spectroscopy [J].
Coustenis, A ;
Salama, A ;
Schulz, B ;
Ott, S ;
Lellouch, E ;
Encrenaz, T ;
Gautier, D ;
Feuchtgruber, H .
ICARUS, 2003, 161 (02) :383-403
[8]  
COUSTENIS A, 2000, ESA SP, V456, P17
[9]   A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths [J].
Douté, S ;
Schmitt, B .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1998, 103 (E13) :31367-31389
[10]  
Drossart P, 1999, ESA SP PUBL, V427, P169