Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application

被引:84
作者
Khanra, Partha [1 ]
Kuila, Tapas [1 ]
Bae, Seon Hyeong [1 ]
Kim, Nam Hoon [2 ]
Lee, Joong Hee [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Dept BIN Fus Technol, WCU Programme, Jeonju 561756, Jeonbuk, South Korea
[2] Chonbuk Natl Univ, Dept Hydrogen & Fuel Cell Engn, Jeonju 561756, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
CARBON NANOTUBE; GREEN APPROACH; OXIDE; TRANSPARENT; ELECTRODES; NANOPARTICLES; POLYANILINE; CAPACITANCE; REDUCTION; COMPOSITE;
D O I
10.1039/c2jm34838a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A green approach for the electrochemical exfoliation of graphite to graphene is reported. After the exfoliation of graphite, the 9-anthracene carboxylate ion (ACA), which was used as an electrolyte, was adsorbed on the surface of graphene through noncovalent interaction. X-ray diffraction analysis confirms the exfoliation of graphite to graphene. Atomic force microscopy and transmission electron microscopy analyses show the formation of single layer graphene. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy confirm the noncovalent attachment of ACA on the surface of graphene. The 9-anthracene carboxylic acid modified graphene (ACEG) shows good electrochemical performance with a high specific capacitance of 577 F g(-1) M H2SO4. The ACEG electrode shows 83.4% retention in specific capacitance after 1000 charge-discharge cycles. A high coulombic efficiency of 102% is also observed indicating its suitability as energy storage electrode materials.
引用
收藏
页码:24403 / 24410
页数:8
相关论文
共 35 条
[1]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Kim, Nam Hoon ;
Lee, Joong Hee .
NANOTECHNOLOGY, 2011, 22 (40)
[4]   Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions [J].
De, Sukanta ;
King, Paul J. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Doherty, Evelyn M. ;
Hernandez, Yenny ;
Duesberg, Georg S. ;
Coleman, Jonathan N. .
SMALL, 2010, 6 (03) :458-464
[5]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[9]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[10]  
Jayalakshmi M, 2008, INT J ELECTROCHEM SC, V3, P1196