β-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro

被引:184
作者
Mori, M [1 ]
Gähwiler, BH [1 ]
Gerber, U [1 ]
机构
[1] Univ Zurich, Brain Res Inst, CH-8057 Zurich, Switzerland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 539卷 / 01期
关键词
D O I
10.1113/jphysiol.2001.013147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABA(B) receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with beta-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABA(A) receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of beta-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, beta-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 53 条
[1]   RETROGRADE SIGNALING AT GABA(A)-RECEPTOR SYNAPSES IN THE MAMMALIAN CNS [J].
ALGER, BE ;
PITLER, TA .
TRENDS IN NEUROSCIENCES, 1995, 18 (08) :333-340
[2]   IMMUNOCYTOCHEMISTRY OF THE TAURINE BIOSYNTHESIS ENZYME, CYSTEINE SULFINATE DECARBOXYLASE, IN THE CEREBELLUM - EVIDENCE FOR A GLIAL LOCALIZATION [J].
ALMARGHINI, K ;
REMY, A ;
TAPPAZ, M .
NEUROSCIENCE, 1991, 43 (01) :111-119
[3]   LOCALIZATION OF GLYCINE RECEPTORS IN THE RAT CENTRAL NERVOUS-SYSTEM - AN IMMUNOCYTOCHEMICAL ANALYSIS USING MONOCLONAL-ANTIBODY [J].
ARAKI, T ;
YAMANO, M ;
MURAKAMI, T ;
WANAKA, A ;
BETZ, H ;
TOHYAMA, M .
NEUROSCIENCE, 1988, 25 (02) :613-624
[4]  
Beat H., 1998, ORGANOTYPIC SLICE CU, P461
[5]   GLYCINE RECEPTOR HETEROGENEITY IN RAT SPINAL-CORD DURING POSTNATAL-DEVELOPMENT [J].
BECKER, CM ;
HOCH, W ;
BETZ, H .
EMBO JOURNAL, 1988, 7 (12) :3717-3726
[6]   EVIDENCE FOR GLUTAMATE AS THE OLFACTORY RECEPTOR CELL NEUROTRANSMITTER [J].
BERKOWICZ, DA ;
TROMBLEY, PQ ;
SHEPHERD, GM .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (06) :2557-2561
[7]   GLYCINE RECEPTORS - HETEROGENEOUS AND WIDESPREAD IN THE MAMMALIAN BRAIN [J].
BETZ, H .
TRENDS IN NEUROSCIENCES, 1991, 14 (10) :458-461
[8]   Glycine receptors in cultured chick sympathetic neurons are excitatory and trigger neurotransmitter release [J].
Boehm, S ;
Harvey, RJ ;
vonHolst, A ;
Rohrer, H ;
Betz, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (03) :683-694
[9]   MECHANISM OF ANION PERMEATION THROUGH CHANNELS GATED BY GLYCINE AND GAMMA-AMINOBUTYRIC-ACID IN MOUSE CULTURED SPINAL NEURONS [J].
BORMANN, J ;
HAMILL, OP ;
SAKMANN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 385 :243-286
[10]  
CHATTIPAKORN SC, 2000, SOC NEUR ABSTR, V26, P93