Triangulating topological spaces

被引:83
作者
Edelsbrunner, H
Shah, NR
机构
[1] UNIV ILLINOIS, DEPT COMP SCI, URBANA, IL 61801 USA
[2] MENTOR GRAPH CORP, SAN JOSE, CA 95131 USA
关键词
combinatorial topology; geometric modeling; grid generation; topological spaces; manifolds; coverings; nerves; regular complexes; simplicial complexes; triangulations; Voronoi cells; Delaunay complexes; homotopy equivalence; homeomorphisms;
D O I
10.1142/S0218195997000223
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a subspace X subset of or equal to R-d and a finite set S subset of or equal to R-d, we introduce the Delaunay complex, D-X, restricted by X. Its simplices are spanned by subsets T subset of or equal to S for which the common intersection of Voronoi cells meets X in a non-empty set. By the nerve theorem, boolean OR D-X and X are homotopy equivalent if all such sets are contractible. This paper proves a sufficient condition for boolean OR D-X and X be homeomorphic.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 24 条
[1]  
Bott R., 1982, Graduate Texts in Mathematics
[2]   REPRESENTING GEOMETRIC STRUCTURES IN D-DIMENSIONS - TOPOLOGY AND ORDER [J].
BRISSON, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (04) :387-426
[3]  
Chew L.P., 1993, P 9 ANN S COMP GEOM, P274
[4]  
Cooke G. E., 1967, Homology of cell complexes
[5]  
Delaunay B., 1934, Bull. Acad. Sci. USSR. Cl. Sci. Math, V7, P1
[6]   SIMULATION OF SIMPLICITY - A TECHNIQUE TO COPE WITH DEGENERATE CASES IN GEOMETRIC ALGORITHMS [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (01) :66-104
[7]   THE UNION OF BALLS AND ITS DUAL SHAPE [J].
EDELSBRUNNER, H .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) :415-440
[8]  
EDELSBRUNNER H, 1987, ALGORITHMS COMBINATI
[9]  
Guillemin V., 1974, Differential topology
[10]  
Hirsch M.W., 1976, Differential Topology, DOI DOI 10.1007/978-1-4684-9449-5