Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge

被引:577
作者
Adams, Brian D. [1 ,2 ]
Radtke, Claudio [1 ,2 ]
Black, Robert [1 ,2 ]
Trudeau, Michel L. [3 ]
Zaghib, Karim [3 ]
Nazar, Linda F. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Inst Rech Hydroquebec, Varennes, PQ J3X 1S1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LI-AIR BATTERIES; LITHIUM-OXYGEN BATTERIES; ELECTROCHEMISTRY; ELECTRODES; REDUCTION; DISCHARGE; CATALYSTS; PERFORMANCE; LIMITATIONS;
D O I
10.1039/c3ee40697k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a significant difference in the growth mechanism of Li2O2 in Li-O-2 batteries for toroidal and thin-film morphologies which is dependent on the current rate that governs the electrochemical pathway. Evidence from diffraction, electrochemical, FESEM and STEM measurements shows that slower current densities favor aggregation of lithium peroxide nanocrystallites nucleated via solution dismutase on the surface of the electrode; whereas fast rates deposit quasi-amorphous thin films. The latter provide a lower overpotential on charge due to their nature and close contact with the conductive electrode surface, albeit at the expense of lower discharge capacity.
引用
收藏
页码:1772 / 1778
页数:7
相关论文
共 37 条
  • [1] THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS
    AURBACH, D
    DAROUX, M
    FAGUY, P
    YEAGER, E
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01): : 225 - 244
  • [2] The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries
    Black, Robert
    Lee, Jin-Hyon
    Adams, Brian
    Mims, Charles A.
    Nazar, Linda F.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) : 392 - 396
  • [3] Non-Aqueous and Hybrid Li-O2 Batteries
    Black, Robert
    Adams, Brian
    Nazar, L. F.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 801 - 815
  • [4] Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization
    Black, Robert
    Oh, Si Hyoung
    Lee, Jin-Hyon
    Yim, Taeeun
    Adams, Brian
    Nazar, Linda F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) : 2902 - 2905
  • [5] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [6] Chase M. W., 1998, J PHYS CHEM REF DATA, V9, P1510
  • [7] Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li-Air Battery Electrolytes
    Herranz, Juan
    Garsuch, Arnd
    Gasteiger, Hubert A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (36) : 19084 - 19094
  • [8] Jung HG, 2012, NAT CHEM, V4, P579, DOI [10.1038/nchem.1376, 10.1038/NCHEM.1376]
  • [9] Li-air batteries: A classic example of limitations owing to solubilities
    Kowalczk, Ian
    Read, Jeffery
    Salomon, Mark
    [J]. PURE AND APPLIED CHEMISTRY, 2007, 79 (05) : 851 - 860
  • [10] Rechargeable Lithium/TEGDME-LiPF6/O2 Battery
    Laoire, Cormac O.
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A302 - A308