Degradation of E2A proteins through a ubiquitin-conjugating enzyme, UbcE2A

被引:60
作者
Kho, CJ
Huggins, GS
Endege, WO
Hsieh, CM
Lee, ME
Haber, E
机构
[1] HARVARD UNIV,SCH PUBL HLTH,CARDIOVASC BIOL LAB,BOSTON,MA 02115
[2] HARVARD UNIV,SCH MED,DEPT MED,BOSTON,MA
[3] BRIGHAM & WOMENS HOSP,DIV CARDIOVASC,BOSTON,MA 02115
[4] MASSACHUSETTS GEN HOSP,CARDIAC UNIT,BOSTON,MA 02114
关键词
D O I
10.1074/jbc.272.6.3845
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The helix-loop-helix E2A proteins (E12 and E47) govern cellular growth and differentiation. To identify binding partners that regulate the function of these ubiquitous transcription factors, we screened for proteins that interacted with the C terminus of E12 by the yeast interaction trap, UbcE2A, a rat enzyme that is highly homologous to and functionally complements the yeast ubiquitin-conjugating enzyme UBC9, was identified and cloned, UbcE2A appears to be an E2A-selective ubiquitin-conjugating enzyme because it interacts specifically with a 54-amino acid region in E47-(477-530) distinct from the helix-loop-helix domain. In contrast, most of the UbcE2A protein is required for interaction with an E2A protein. The E2A proteins appear to be degraded by the ubiquitin-proteasome pathway because the E12 half-life of 60 min is extended by the proteasome inhibitor MG132, and E12 is multi-ubiquitinated in vivo, Finally, antisense UbcE2A reduces E12 degradation, By participating in the degradation of the E2A proteins, UbcE2A may regulate cell growth and differentiation.
引用
收藏
页码:3845 / 3851
页数:7
相关论文
共 55 条
[1]  
ALKHODAIRY F, 1995, J CELL SCI, V108, P475
[2]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050
[3]  
[Anonymous], 1994, METHODS YEAST GENETI
[4]  
Ausubel FM., 1993, Current Protocols in Molecular Biology
[5]   E2A PROTEINS ARE REQUIRED FOR PROPER B-CELL DEVELOPMENT AND INITIATION OF IMMUNOGLOBULIN GENE REARRANGEMENTS [J].
BAIN, G ;
MAANDAG, ECR ;
IZON, DJ ;
AMSEN, D ;
KRUISBEEK, AM ;
WEINTRAUB, BC ;
KROP, I ;
SCHLISSEL, MS ;
FEENEY, AJ ;
VANROON, M ;
VANDERVALK, M ;
TERIELE, HPJ ;
BERNS, A ;
MURRE, C .
CELL, 1994, 79 (05) :885-892
[6]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[7]   AN INTERMOLECULAR DISULFIDE BOND STABILIZES E2A HOMODIMERS AND IS REQUIRED FOR DNA-BINDING AT PHYSIOLOGICAL TEMPERATURES [J].
BENEZRA, R .
CELL, 1994, 79 (06) :1057-1067
[8]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[9]   HUMAN PROTOONCOGENE C-JUN ENCODES A DNA-BINDING PROTEIN WITH STRUCTURAL AND FUNCTIONAL-PROPERTIES OF TRANSCRIPTION FACTOR AP-1 [J].
BOHMANN, D ;
BOS, TJ ;
ADMON, A ;
NISHIMURA, T ;
VOGT, PK ;
TJIAN, R .
SCIENCE, 1987, 238 (4832) :1386-1392
[10]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583