Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood

被引:66
作者
Descombes, X [1 ]
Morris, RD
Zerubia, J
Berthod, M
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] NASA, Ames Res Ctr, RIACS, Computat Sci Div, Moffett Field, CA 94035 USA
关键词
Chien model; estimation; hierarchical model; image restoration; image segmentation; maximum likelihood; Potts model;
D O I
10.1109/83.772239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in statistics now allow maximum likelihood estimators for the parameters of Markov random fields (MRF's) to be constructed. We detail the theory required, and present an algorithm that is easily implemented and practical in terms of computation time. We demonstrate this algorithm on three MRF models-the standard Potts model, an inhomogeneous variation of the Potts model, and a long-range interaction model, better adapted to modeling real world images. We estimate the parameters from a synthetic and a real image, and then resynthesize the models to demonstrate which features of the image have been captured by the model. Segmentations are computed based on the estimated parameters and conclusions drawn.
引用
收藏
页码:954 / 963
页数:10
相关论文
共 21 条
[1]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[2]  
BESAG J, 1974, J R STAT SOC B, V36, P721
[3]   IMAGE-RESTORATION USING AN ESTIMATED MARKOV MODEL [J].
CHALMOND, B .
SIGNAL PROCESSING, 1988, 15 (02) :115-129
[4]  
Descombes X., 1997, Traitement du Signal, V14, P373
[5]  
DESCOMBES X, P 9 SCIA 95 UPPS SWE, P349
[6]  
DESCOMBES X, 1996, KULESATM129603 LAB M
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]  
GEYER CJ, 1991, COMPUTING SCIENCE AND STATISTICS, P156
[9]  
GEYER CJ, 1992, J R STAT SOC B, V54, P657
[10]  
GIDAS B., 1993, MARKOV RANDOM FIELDS, P471