Coherence resonance in a spatial prisoner's dilemma game

被引:263
作者
Perc, M [1 ]
机构
[1] Univ Maribor, Fac Educ, Dept Phys, SI-2000 Maribor, Slovenia
来源
NEW JOURNAL OF PHYSICS | 2006年 / 8卷
关键词
D O I
10.1088/1367-2630/8/2/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study effects of additive spatiotemporal random variations, introduced to the payoffs of a spatial prisoner's dilemma game, on the evolution of cooperation. In the absence of explicit payoff variations the system exhibits a phase transition from a mixed state of cooperators and defectors to a homogenous state of defectors belonging to the directed percolation universality class. By introducing nonzero random variations to the payoffs, this phase transition can be reverted in a resonance-like manner depending on the variance of noise, thus marking coherence resonance in the system. We argue that explicit random payoff variations present a viable mechanism that promotes cooperation for defection temptation values substantially exceeding the one marking the transition point to homogeneity by deterministic payoffs.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Alexander R. D., 1987, BIOL MORAL SYSTEMS
[2]  
[Anonymous], 1998, Evol. Games Popul. Dyn., DOI DOI 10.1017/CBO9781139173179
[3]  
Axelrod R, 2006, EVOLUTION COOPERATIO
[4]  
BRAUCHLI K, 2000, J THEOR BIOL, P405
[5]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680]
[6]   Stochastic replicator dynamics [J].
Cabrales, A .
INTERNATIONAL ECONOMIC REVIEW, 2000, 41 (02) :451-481
[7]   Spatial coherence resonance near pattern-forming instabilities [J].
Carrillo, O ;
Santos, MA ;
García-Ojalvo, J ;
Sancho, JM .
EUROPHYSICS LETTERS, 2004, 65 (04) :452-458
[8]   STOCHASTIC EVOLUTIONARY GAME DYNAMICS [J].
FOSTER, D ;
YOUNG, P .
THEORETICAL POPULATION BIOLOGY, 1990, 38 (02) :219-232
[9]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287
[10]  
GANG H, 1993, PHYS REV LETT, V71, P807, DOI 10.1103/PhysRevLett.71.807