Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical Capacitors

被引:336
作者
Zhao, Xin [2 ,3 ,4 ]
Zhang, Lili [2 ,3 ]
Murali, Shanthi [2 ,3 ]
Stoller, Meryl D. [2 ,3 ]
Zhang, Qinghua [4 ]
Zhu, Yanwu [1 ]
Ruoff, Rodney S. [2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230036, Peoples R China
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
关键词
aMEGO; MnO2; composites; asymmetric; electrochemical capacitors; SITU REDUCTION ROUTE; COMPOSITE ELECTRODES; CARBON MATERIALS; HIGH-POWER; SUPERCAPACITORS; ENERGY; OXIDE; MNO2; STORAGE; DEPOSITION;
D O I
10.1021/nn3012916
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manganese dioxide (MnO2) particles 2-3 nm in size were deposited onto a porous "activated microwave expanded graphite oxide" (aMEGO) carbon scaffold via a self-controlled redox process. Symmetric electrochemical capacitors were fabricated that yielded a specific capacitance of 256 F/g (volumetric: 640 F/cm(3)) and a capacitance retention of 87.7% after 1000 cycles in 1 M H2SO4; when normalized to MnO2, the specific capacitance was 850 F/g. Asymmetric electrochemical capacitors were also fabricated with aMEGO/MnO2 as the positive electrode and aMEGO as the negative electrode and had a power density of 32.3 kW/kg (for an energy density of 20.8 Wh/kg), an energy density of 24.3 Wh/kg (for a power density of 24.5 kW/kg), and a capacitance retention of 80.5% over 5000 cycles.
引用
收藏
页码:5404 / 5412
页数:9
相关论文
共 53 条
[1]   A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J].
Brousse, T ;
Toupin, M ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A614-A622
[2]   Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles [J].
Chen, Liang ;
Sun, Li-Jie ;
Luan, Feng ;
Liang, Ying ;
Li, Yat ;
Liu, Xiao-Xia .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3742-3747
[3]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[4]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[5]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[6]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[7]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[8]   MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors [J].
Dong, XP ;
Shen, WH ;
Gu, JL ;
Xiong, LM ;
Zhu, YF ;
Li, Z ;
Shi, JL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6015-6019
[9]   Electrochemical Properties of Hybrid Supercapacitor with Nanosized Fe3O4/activated Carbon as Electrodes [J].
Du Xuan ;
Wang Cheng-Yang ;
Chen Ming-Ming ;
Jiao Yang .
JOURNAL OF INORGANIC MATERIALS, 2008, 23 (06) :1193-1198
[10]   High-performance polypyrrole electrode materials for redox supercapacitors [J].
Fan, Li-Zhen ;
Maier, Joachim .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (06) :937-940