Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family

被引:310
作者
Auldridge, ME
Block, A
Vogel, JT
Dabney-Smith, C
Mila, I
Bouzayen, M
Magallanes-Lundback, M
DellaPenna, D
McCarty, DR
Klee, HJ
机构
[1] Univ Florida, Plant Mol & Cellular Biol Program, Gainesville, FL 32611 USA
[2] INRA, UMR990, INP, ENSA Toulouse, F-31326 Castanet Tolosan, France
[3] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词
branching; hormones; seeds;
D O I
10.1111/j.1365-313X.2006.02666.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana has nine genes that constitute a family of putative carotenoid cleavage dioxygenases (CCDs). While five members of the family are believed to be involved in synthesis of the phytohormone abscisic acid, the functions of the other four enzymes are less clear. Recently two of the enzymes, CCD7/MAX3 and CCD8/MAX4, have been implicated in synthesis of a novel apocarotenoid hormone that controls lateral shoot growth. Here, we report on the molecular and genetic interactions between CCD1, CCD7/MAX3 and CCD8/MAX4. CCD1 distinguishes itself from other reported CCDs as being the only member not targeted to the plastid. Unlike ccd7/max3 and ccd8/max4, both characterized as having highly branched phenotypes, ccd1 loss-of-function mutants are indistinguishable from wild-type plants. Thus, even though CCD1 has similar enzymatic activity to CCD7/MAX3, it does not have a role in synthesis of the lateral shoot growth inhibitor. Rather, it may have a role in synthesis of apocarotenoid flavor and aroma volatiles, especially in maturing seeds where loss of function leads to significantly higher carotenoid levels.
引用
收藏
页码:982 / 993
页数:12
相关论文
共 57 条
  • [1] TRANSIENT TRANSFORMATION OF ARABIDOPSIS LEAF PROTOPLASTS - A VERSATILE EXPERIMENTAL SYSTEM TO STUDY GENE-EXPRESSION
    ABEL, S
    THEOLOGIS, A
    [J]. PLANT JOURNAL, 1994, 5 (03) : 421 - 427
  • [2] Terpenoid metabolism in wild-type and transgenic Arabidopsis plants
    Aharoni, A
    Giri, AP
    Deuerlein, S
    Griepink, F
    de Kogel, WJ
    Verstappen, FWA
    Verhoeven, HA
    Jongsma, MA
    Schwab, W
    Bouwmeester, HJ
    [J]. PLANT CELL, 2003, 15 (12) : 2866 - 2884
  • [3] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [4] SYNTHESIS OF THE SMALL SUBUNIT OF RIBULOSE-BISPHOSPHATE CARBOXYLASE FROM GENES CLONED INTO PLASMIDS CONTAINING THE SP6 PROMOTER
    ANDERSON, S
    SMITH, SM
    [J]. BIOCHEMICAL JOURNAL, 1986, 240 (03) : 709 - 715
  • [5] Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components
    Baldwin, EA
    Scott, JW
    Shewmaker, CK
    Schuch, W
    [J]. HORTSCIENCE, 2000, 35 (06) : 1013 - 1022
  • [6] Branching in pea - Action of genes rms3 and rms4
    Beveridge, CA
    Ross, JJ
    Murfet, IC
    [J]. PLANT PHYSIOLOGY, 1996, 110 (03) : 859 - 865
  • [7] Long-distance signalling and a mutational analysis of branching in pea
    Beveridge, CA
    [J]. PLANT GROWTH REGULATION, 2000, 32 (2-3) : 193 - 203
  • [8] MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone
    Booker, J
    Sieberer, T
    Wright, W
    Williamson, L
    Willett, B
    Stirnberg, P
    Turnbull, C
    Srinivasan, M
    Goddard, P
    Leyser, O
    [J]. DEVELOPMENTAL CELL, 2005, 8 (03) : 443 - 449
  • [9] MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    Booker, J
    Auldridge, M
    Wills, S
    McCarty, D
    Klee, H
    Leyser, O
    [J]. CURRENT BIOLOGY, 2004, 14 (14) : 1232 - 1238
  • [10] Oxidative remodeling of chromoplast carotenoids:: Identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in crocus secondary metabolite biogenesis
    Bouvier, F
    Suire, C
    Mutterer, J
    Camara, B
    [J]. PLANT CELL, 2003, 15 (01) : 47 - 62