Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

被引:107
作者
Borgia, Alessandro [1 ]
Wensley, Beth G. [2 ]
Soranno, Andrea [1 ]
Nettels, Daniel [1 ]
Borgia, Madeleine B. [1 ,2 ]
Hoffmann, Armin [1 ]
Pfeil, Shawn H. [3 ]
Lipman, Everett A. [3 ]
Clarke, Jane [2 ]
Schuler, Benjamin [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
[2] Univ Cambridge, Chem Lab, Cambridge CB2 1EW, England
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
美国国家科学基金会; 英国惠康基金; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
ENERGY LANDSCAPE; TRANSITION-STATE; DEPENDENT DIFFUSION; DYNAMICS; COLLAPSE; BARRIER; SPEED; SIMULATION; VISCOSITY; NUCLEUS;
D O I
10.1038/ncomms2204
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Forster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow-and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.
引用
收藏
页数:9
相关论文
共 60 条
[1]   SPECIFIC NUCLEUS AS THE TRANSITION-STATE FOR PROTEIN-FOLDING - EVIDENCE FROM THE LATTICE MODEL [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
BIOCHEMISTRY, 1994, 33 (33) :10026-10036
[2]   THE ROLE OF SOLVENT VISCOSITY IN THE DYNAMICS OF PROTEIN CONFORMATIONAL-CHANGES [J].
ANSARI, A ;
JONES, CM ;
HENRY, ER ;
HOFRICHTER, J ;
EATON, WA .
SCIENCE, 1992, 256 (5065) :1796-1798
[3]   Diffusive model of protein folding dynamics with Kramers turnover in rate [J].
Best, RB ;
Hummer, G .
PHYSICAL REVIEW LETTERS, 2006, 96 (22)
[4]   Diffusion models of protein folding [J].
Best, Robert B. ;
Hummer, Gerhard .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (38) :16902-16911
[5]   Coordinate-dependent diffusion in protein folding [J].
Best, Robert B. ;
Hummer, Gerhard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (03) :1088-1093
[6]   Measuring internal friction of an ultrafast-folding protein [J].
Cellmer, Troy ;
Henry, Eric R. ;
Hofrichter, James ;
Eaton, William A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) :18320-18325
[7]   Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding [J].
Chahine, Jorge ;
Oliveira, Ronaldo J. ;
Leite, Vitor B. P. ;
Wang, Jin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (37) :14646-14651
[8]   ROLE OF DIFFUSION IN THE FOLDING OF THE ALPHA-SUBUNIT OF TRYPTOPHAN SYNTHASE FROM ESCHERICHIA-COLI [J].
CHRUNYK, BA ;
MATTHEWS, CR .
BIOCHEMISTRY, 1990, 29 (08) :2149-2154
[9]   Single-Molecule Fluorescence Experiments Determine Protein Folding Transition Path Times [J].
Chung, Hoi Sung ;
McHale, Kevin ;
Louis, John M. ;
Eaton, William A. .
SCIENCE, 2012, 335 (6071) :981-984
[10]  
De Gennes P.-G, 1979, Scaling concepts in polymer physics