Proof of Lyapunov exponent pairing for systems at constant kinetic energy

被引:88
作者
Dettmann, CP
Morriss, GP
机构
[1] School of Physics, University of New South Wales, Sydney
关键词
D O I
10.1103/PhysRevE.53.R5545
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a proof that a system consisting of any finite number of particles that move under the action of a scalar potential at constant kinetic energy exhibits conjugate pairing of Lyapunov exponents; that is, the Lyapunov exponents come in pairs, which sum to the same constant. This result generalizes previous results, because it is independent of the size of the system.
引用
收藏
页码:R5545 / R5548
页数:4
相关论文
共 16 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states [J].
Dellago, C ;
Posch, HA ;
Hoover, WG .
PHYSICAL REVIEW E, 1996, 53 (02) :1485-1501
[3]  
DETTMANN CP, 1995, FRACTALS, V3, P161, DOI 10.1142/S0218348X9500014X
[4]   Conjugate pairing in the three-dimensional periodic Lorentz gas [J].
Dettmann, CP ;
Morriss, GP ;
Rondoni, L .
PHYSICAL REVIEW E, 1995, 52 (06) :R5746-R5748
[5]   SYMMETRY PROPERTY OF THE LYAPUNOV SPECTRA OF A CLASS OF DISSIPATIVE DYNAMICAL-SYSTEMS WITH VISCOUS DAMPING [J].
DRESSLER, U .
PHYSICAL REVIEW A, 1988, 38 (04) :2103-2109
[6]   VISCOSITY OF A SIMPLE FLUID FROM ITS MAXIMAL LYAPUNOV EXPONENTS [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW A, 1990, 42 (10) :5990-5997
[7]  
EVANS DJ, 1990, STAT MECHANICS NONEQ
[8]   SYMMETRY OF LYAPUNOV SPECTRUM [J].
GUPALO, D ;
KAGANOVICH, AS ;
COHEN, EGD .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1145-1159
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   DIRECT MEASUREMENT OF EQUILIBRIUM AND NONEQUILIBRIUM LYAPUNOV SPECTRA [J].
HOOVER, WG ;
POSCH, HA .
PHYSICS LETTERS A, 1987, 123 (05) :227-230