Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose

被引:522
作者
Yang, B [1 ]
Wyman, CE [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
xylan removal; lignin removal; flowthrough reactor; batch hydrolysis; enzymatic digestibility; pretreatment;
D O I
10.1002/bit.20043
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160degrees and 220degreesC, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 43 条
[1]  
ADNEY B, 1996, 006 NAT REN EN LAB
[2]   A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust [J].
Allen, SG ;
Schulman, D ;
Lichwa, J ;
Antal, MJ ;
Jennings, E ;
Elander, R .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (10) :2352-2361
[3]   A comparison between hot liquid water and steam fractionation of corn fiber [J].
Allen, SG ;
Schulman, D ;
Lichwa, J ;
Antal, MJ ;
Laser, M ;
Lynd, LR .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (13) :2934-2941
[4]  
[Anonymous], 1990, WOOD RES B WOOD RES
[5]   HYDROTHERMAL DEGRADATION OF CELLULOSIC MATTER TO SUGARS AND THEIR FERMENTATIVE CONVERSION TO PROTEIN [J].
BOBLETER, O ;
NIESNER, R ;
ROHR, M .
JOURNAL OF APPLIED POLYMER SCIENCE, 1976, 20 (08) :2083-2093
[6]   Fundamental factors affecting biomass enzymatic reactivity [J].
Chang, VS ;
Holtzapple, MT .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :5-37
[7]   ORGANOSOLV PRETREATMENT FOR ENZYMATIC-HYDROLYSIS OF POPLARS .1. ENZYME HYDROLYSIS OF CELLULOSIC RESIDUES [J].
CHUM, HL ;
JOHNSON, DK ;
BLACK, S ;
BAKER, J ;
GROHMANN, K ;
SARKANEN, KV ;
WALLACE, K ;
SCHROEDER, HA .
BIOTECHNOLOGY AND BIOENGINEERING, 1988, 31 (07) :643-649
[8]  
Converse Alvin O., 1993, V9, P93
[9]   ULTRASTRUCTURE OF STEAM-EXPLODED WOOD [J].
DONALDSON, LA ;
WONG, KKY ;
MACKIE, KL .
WOOD SCIENCE AND TECHNOLOGY, 1988, 22 (02) :103-114
[10]  
EHRMAN T, 1994, 012 NT REN EN LAB